
/ti>-VZÖ /7b

mit; III!.,

ill 111 a u it .1 HI

REPORT NO. 1209
JULY 1963

mini,

mil., "VIMM

»»

INTRODUCTORY PROGRAMMING

FOR ORnv/AP AMn RRIFSP

FORAST (Formula and Assembly Translator)

Mirhaaj I Dnmanolli iviiuiiui/i j. i\uiiiuiii>iii

RDT & E Proiect No. IA/I0I050IA0Q3

BALLISTIC RESEARCH LABORATORIES

äs
fife

ABERDEEN PROVING GROUND, MARYLAND

DDC AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from DDC.

The findings in this report are not to be construed
as an official Department of the Army position.

BALLISTIC RESEARCH LABORATORIES

REPORT WO. 120Q

JULY I963

Ti\rnRnnTTminRV PRnrrRAMMTron vno narsiTun Awn Ttarvcn

FOMST (Formula and Assembly Translator)

Michael J. Romanelli

d

Computing Laboratory

RDT & E Project No« IMOIO50IAOO3 u*w

ABERDEEN PROVING GROUND, MARYLAND

—„awTCAT, LIBRARY "J." Ib v r» " * ~ " —

 1 -\ 1. BLUÜ. OJ-yJ

RTKAP-TL

REPORT NO. 1209

MJRomanelli/sf
j. i. kJ \— o. »_*.V- v— J.-J. A

Julv 196^

j-iiiinji/u^iuai rrtwuxuurir'.LLriLr run urvi-'V.H.L* ülNU .BTUJüJüU

ABSTRACT

FORAST is a programming language designed for use on QRDVAC and BRLESC,

"the hi^h-s^eed digital computers of the Ballistic Research Laboratories»

Programs written in this language, with minor limitations, may be executed

on either computer. BRL Report No. 1172, [l] , describes FORAST in its

generality and was written primarily for professional programmers. This

report is intended for the novice. Fundamental concepts and details of the

language are illustrated in many examples so that the novice is taught how to

program and obtain practical solutions for a variety of mathematical problems.

Intended as a supplement to [l.] , this report does not illustrate the full

generality of the language. Some of the material is repetitious but amplified

and several references are made to Ql] .

TABLK Ob' CÜNTL'NTB

PAGE

ABSTRACT 3

INTRODUCTION 7

EVALUATION OF FUNCTIONS 9

MAJOR COMPONENTS OF HIGH SPEED DIGITAL COMPUTERS 10

EXAMPLE 1, SIMPLE PROGRAM 1J

EXAMPLE 2, IDENTIFYING OUTPUT RESULTS 28

NAMES AND OPERATIONS Jl

TTTVA 1IT1T T71 ~Z n T T\T/~» T TT1 T T fl T T TTTTT^ T7TT TTtTrWm-/MlTr* /VT* /M\TT1 A T1 n T TU IDMm "7^" riAj-uviri-i£j .5, 0_1.1vij.unj vrtijuiiiu ruii^nuiw wr UINJ_- >UA(JUI
V
IILINX jo

EXAMPLE h} SINGLE VALUED FUNCTION OF TWO ARGUMENTS in

EXAMPLE 5, CONVENIENT OUTPUT FORMAT kk

EXAMPLE 6, SIMPLE CONDITIONAL STATEMENT 52

TTYflMPTTT 7 VART APT/P TPYTrPQ £n
• •t'*r-i i | . V -ITU- IXilUJ Jl I J_l.-flh._l_ _L. kV • •»•*••••••••••••••••••••••••••••••••••••••• UV

EXAMPLE 8, INDEXING 68

EXAMPLE 9, SORTING, MONOTONE SEQUENCES 7^

EXAMPLE 10, STORAGE ALLOCATION LISTING °3

EXAMPLE 11 FIXED LENGTH TABLE OF FORWARD DIFFERENCES 88

EXAMPLE 12, COMPILATION ERRORS DETECTED 100

EXAMPLE 13, RUN (EXECUTION) ERRORS DETECTED 104

EXAMPLE Ik, VARIABLE LENGTH TABLE OF FORWARD DIFFERENCES 107

EXAMPLE 15, MULTIPLE ARGUMENT, MULTIPLE RESULT FUNCTIONS 115

TA "RLE (W flOMTPlMTR

PAGE

EXAMPLE l6, INTERPOLATION 121

EXAMPLE 17, SOLUTION OF N LINEAR EQUATIONS IN N UNKNOWNS 130

EXAMPLE 18, SOLUTION OF A .SYMMETRIC SYSTEM 135

EXAMPLE IQ; SIMPSON INTEGRATION (QUADRATURE) 1J8

EXAMPLE 20, SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 143

EXAMPLE 21, MATRIX OPERATIONS, ADDITION, SUBTRACTION,

MULTIPLICATION AND INVERSION 1S1

EXAMPLE 22, REAL ROOT OF CONTINUOUS FUNCTION, BISECTION 159

EXAMPLE 23, REAL ROOT OF CONTINUOUS FUNCTION, NEWTON METHOD 164

EXAMPLE 2k, REAL ROOT OF CONTINUOUS FUNCTION, REGULA-FALSI 167

EXAMPLE 25, REAL ROOT OF CONTINUOUS FUNCTION, CONSTANT SECANT 170

EXAMPLE 26, REAL ROOT OF CONTINUOUS FUNCTION, GENERAL INTERATIVE 175

EXAMPLE 27, POLYNOMIAL LEAST SQUARES 178

EXAMPLE 28, POLYNOMIAL LEAST SQUARES, RESIDUALS, RMS I85

EXAMPLE 29, DIFFERENTIAL CORRECTIONS 1Q0

EXAMPLE 30, GENERATING NORMALLY DISTRIBUTED PSEUDO RANDOM NUMBERS 198

CONCLUSIONS 204

D U,L,U,L»Tn\Tr<T7,C! OPiC inn ijiiuinijijij ••••••••••••••••>••.•• •••• •• rHJO

APPENDIX 207

I. INTRODUCTION

The Ballistic Research Laboratories' high-speed computers, ORDVAC and

BRLESC, are used to obtain solutions of mathematical problems. In general,

the numerical solutions are obtained by instructing the high-speed computers

to EVALUATE FUNCTIONS that approximate the solutions desired. Hence, to obtain

solutions from high-speed computers, the computers are instructed to carry out

the detailed operations required to evaluate particular functions of interest.

Conventional mathematical notation, which permits considerable freedom

of expression and in which problems, solutions, and functions are generally-

expressed in a form governeu. by human convenience, is no^ iU_Lj.y accep^a^^e ^y

high-speed computers. Indeed, the instructions to computers that specify the

essential operations and the numerical quantities involved in the operations

are ultimately expressed in a PRIMITIVE LANGUAGE that is understood by the

computer. For most high-speed digital computers, the primitive language

consists of combinations of only two characters, 0 and 1, the basic characters

of the binary number system. Specific combinations of these characters must

be constructed to represent the sequence of operations and the quantities

required to obtain a numerical solution. The human task of constructing the

required combinations of binary characters is tedious, difficult and highly

susceptible to human error. To simplify this task, HIGHER-LEVEL LANGUAGES are

designed so that computers can be instructed by professionals with programs in

their primitive languages to automatically translate them into their respective

primitive languages. In contrast to the PRIMITIVE LANGUAGE, the HIGHER-LEVEL

LANGUAGES admit combinations of the letters of the alphabet, the decimal digits,

and some mathematical symbols such as + - = etc. The programs which

automatically accept the higher-level language and carry out the translation

are canea uuroriiaEinD, /iODiMnDijEinD, iiuiiiDuixunD, ei-i;., ctiiu. genexa.j.j.y etuiuxu sumc

of the freedom of mathematical notation together with some English word state-

ments for controlling sequences of operations. Although the higher-level

languages do indeed relieve the human of many tedious u.etails, a novice may

still feel burdened with the necessity for specifying particular details re-

quired in a high-level language.

7

j?UKKt>T is a nign-j-eve_L xanguage uesxgneu. lur use uri unuv^u a.nu DXYUHDO.

BRL Report No. 1172, [[l] > describing FORAST in its generality was intended

as a reference manual for professional programmers. This report is intended

for the novice and is confined to fundamental concepts and important details

illustrated by numerous examples, teaching the novice how to program a -variety

of mathematical problems. Each example includes:

a statement of a problem;

a method for obtaining a solution;

a chart indicating the sequence of the necessary operations;

a program written in FORAST;

a tabulated copy of the results obtained from the computer.

Many of the methods used in the examples were chosen to illustrate particular

concepts of the language and do not necessarily represent the most efficient

solutions in the given situations.

ö

II. EVALUATION OF FUNCTIONS

recording of mathematical functions. Below are listed-the four associated

operations:

1.) SUBSTITUTION of numerical values for each argument of the functions;

Q ^ ÜTTOPAÜUTITA +*U^ A m^ A /-».-. + r-.A o-MT+Vmft + irt r\-r\a-r"^ 4- -l r\-n c •

3.) RECORDING numerical values of relevant functions;

h.) CONTROLLING the sequence of operations involved in 1,2, and 3-

More specifically, to obtain a solution to a problem from a high-speed computer,

we instruct the computer to substitute, to evaluate, to record and to control

all operations required to obtain a solution.

In a given problem, all these operations must be planned in advance and

the computer must receive specific instructions as indicated on a Flow Chart.

A general Flow Chart is illustrated schematically in FIGURE 1.

•mrirrw SUBSTITUTE numerical
values for variables,
constants, parameters,
etc.

EVALUATE and RECORD
numerical values of
relevant functions.

SUBSTITUTE other
numerical values of
interest

Yes
DETERMINE whether
further evaluations
are desired

No

i JJX V-/J. i

iV±üUitt x.

GENERAL FLOW CHART FOR EVALUATING FUNCTIONS

9

Before describing the fundamental concepts of the language, we consider

next the major components of the computers and the function of each as regards

their use in obtaining a solution of a problem.

r CONTROL
EXTERNAL 1

UNIT i
STORAGE

i

ii L -1

y

INPUT

DEVICES

INTERNAL

STORAGE

1 Mfunnv ^

OUTPUT

DEVICES

i

1 '

ARITH

UNIT

FIGURE 2.

The components shown in FIGURE 2. are typical for most high-speed digital

computers. The input devices generally consist of electro-mechanical means of

reading paper cards, magnetic or paper tape.* The output devices use similar

* To record information on paper cards or paper tape, the cards or tapes are
perforated, (i.e., holes are punched in them,), wherein specific combinations
of punches define specific characters. On magnetic tape, specific combi-
nations of small magnetized areas correspond to specific characters.

10

lllCCLXIiD L»l_* pxj.no Ui XCU^JXU. icicvanu xcöixu-OQ. luaiij OUJU^JUUUI Q i_*.ot ^umuiiiaüluiiQ v-»x

these devices together with high-speed printers and other optical or photo-

graphic devices for output. The input-output devices may also serve as

external storage units. Magnetic ta"ne units mw and are used as innut or out-

put devices or even as external storage. Hence input and output devices are

used to get information into and out of the internal storage as indicated by

the arrows of FIGURE 2. In general, the information that passes through the

inpuo uevices is recorueu in inoernax storage anu one inxormaoion onao is re-

corded on output devices is a copy of selected information that exists in

internal.storage. Information recorded in internal storage is retained there

m c- 1 AMrt Qf /^ a c T v« ö/^ T M ^ ö ö rl -i +" T<r< VA+QI MQ/^ fViovo IIM+T 1 +Vii=i o/Mn-m i+ i=iT» no i nf+v«nrt+_
aO _LV_/ll£^ 0,0 U.C O X.X ^KJ. j J-ilVwi^^ \-A. X, O J. O X C UO. X 11CU UHCl t; l-lll OIX OLlt >— Wlll^/14. uex J-O 1UÜ Ul "-*-V_ o —

ed to replace it with other information. The arithmetic unit is used to perform

ordinary arithmetic, i.e., addition, subtraction, multiplication and division.

•"Pin Q /-»'-> n + v»/"> 1 urn'+ rln -y+c* r»+o onrl Qof i irQ +oc ol I nm*+ c "in or» r*r\T*r\ci n^o T.ri 4~Vi Q OJ^+ r~»"P xiii^ >_ V-*J.J. t^x v^_i_ uiix v ^*.x,x v- *— ou wnu. t-t_vx,vi-*>^,^u <-x_i__i_ um. ou xii wv^vi u^u^^ r* a. uii "~v .;\.. u vx

instructions that have been recorded in internal storage.

J.V1 IKJ VI X11K Ulli, ^tLA. L/tX UXXX UXUÜ W X L/ll^ iJlU tJ WX U11X UD UJ1U U11U X """ i.iiir- • • UUX L.^ll^.U Ü O O

of the high-level language, a programmer designs a set of instructions (expressed

in the high-level language) that will when executed by the computer produce a

qnln + inn +.r» a on -tr^n -nTTiVil ^m _ TTn^ c^+. nf* l nctrnfti nnQ flnH flpnnniTiflmn'nt; r^fl+.A

(called a program) are recorded on paper cards. These cards are inserted in

a card input device. Without loss of generality, one may assume that, after

activating a few switches on the control panel of the computer, an equivalent

copy of the instructions that were recorded on cards, is recorded in internal

storage. The instructions are then executed and results produced accordingly.

Actually, the FORAST COMPILER which is temporarily recorded- in internal storage

activates the card input device, and translates the high-level language to the

primitive machine language. It is the primitive machine language corresponding

to the high-level language that is recorded in internal storage. In interpre-

ting and attempting to transform the high-level language, the compiler can and

does detect some violations of grammatical errors; in such cases,it records

pertinent information on the output device that identifies the particular

violation and does not permit the computer to attempt to execute the program.

11

in suminaiy, coxxtitiponuiii^ oo a. gj.ven ^>rouj.eni, wei

1=) plan a solution and exhibit the plan in the form of a flow-chart:

2.) write a set of instructions in the high-level language to execute
the plan;

3.) record the set of instructions and accompanying data on paper cards;

111 e1 l"Kwi-i + +V»ci ir\Q r»trQ era + r\ + Vici r» r-im-nn +QT* •

5.) obtain the computer output and tabulate the results.

Although not explicitly stated previously, it is important to recognize that

once a pro cram has been tried, tested and proved, it can be re-used for other

12

EXAMPLE 1.

To illustrate some of the general concepts stated thus far, and to

introduce some fundamentals of the language we consider next Example 1.

Y Y yh&ro "> = 1 - 9 - * -

i.e.} a i/äuie OJ. nUuiericax values ior

X

1

o -o

y

l

o

RWQTTTRT^n- For each pair of values- X.5 Y,, compute and record

Z(X.,Y.) = /x? + Y?

i.e., we WSIIL. oo pi*o«-iucs a o&uj_e wi on en ones

X

1

30

-8

Y

1

1+0

6

Z(J V)
1. klk

so
10

for an indefinite number of pairs, (X/f)

xo pxan a soxux-ion ior i^nis prouxem, we i-acitly assume that the given

numerical values of X and Y will be recorded in a "prescribed form" on paper

cards, one pair of values on each card, and utilizing as many cards as are

IlC^CoocLxV lui uil<r v;um^xc uc oauxc ui VCI._LLICö . AJ. ouuugii OIIID Xö HUL one uiu&o

efficient method for recording the data, it is a practical assumption that is

readily fulfilled. One could assume two, three, or more pairs recorded on each

UUIUJ llWffc ¥ t±) iui oiiii^xi. <w J. u V n ^. uuu uiii- v^xi\^ j.^_». x. i L/V^J. ^.uiui

Next, we make use of a fundamental characteristic of card-input devices.

Cards containing information to be used in the solution of a problem are

stacked in the input-hopper of the input-device with the card at the bottom of

the stack "engaged" under a "read" station. (See FIGURE 7.) When the input-

device is activated by the computer, the information punched in the card under

the "read" station is interpreted and the information transmitted to internal

storage. During the process of interpretation and transmission, the card auto-

matically moves to a storage bin and the "next" card in the stack moves under
4-1-^ — ~~J «4-«4-J^-, ~.„~J,, -P^-w* +1 «^1^-4- ~ ,-.+• -t ,«T4- -? ~« ~-p 4-U~ A „«,,+ A^-,rA r*r* TJ^-^rt^ one ieda buanuxi icau^ IUI one UCAU CHJ OX va oxun ux one XIIL/HO U.CVXI~C. neii'-e,

cards that have been read accumulate in the storage bin and are not accessible

to the computer for re-reading unless manually re-inserted in the input-hopper.

Cards are generally read only once for a given problem since the information

recorded on them is recorded in internal storage indefinitely for as many

future references as desired. A similar sequence of card-processing applies

to card-output devices i.e. the automatic nassa^e of cards from innut-normer

to "punch" station and then to a- storage bin. To utilize this fundamental

sequence, we plan to have a pair of values read and substituted for X and Y,

instruct the computer to evaluate the corresponding function, record the result

on the card output device and then repeat the process using the next pair, etc.

Hence our plan can be exhibited in the form of the simple Flow-Chart as shown

in FIGURE 5.

-1)1

START

SUBSTITUTE a pair of
numerical values for X and Yj
i.e., record internally the
pair of numerical values that

the card in^ut device

Corresponding to the numerical
values of X and Y that currently
exist internally, EVALUATE and
record internally

Z =/ Xd + Yd

RTrnnRT) PYtprra 1 1 v rm a Mrfl in
•"""""•' ——»-"—•-— j —" — •—••-— -•-*»

the card output device the
numerical values of

X Y and Z

that currently exist internally

START i t

READ:

1'

Z = y X2 + Y2

i '

PRINT:

X , Y , Z

"l.TrYDTYV" WORDY" CHART CONCISE SYMBOLIC CHART

r.Lijuruii ;).

A ülMFLK FLAN TO OBTAIN A SOLUTION FOR EXAMPLE 1.

15

The "-wordy" chart is intentionally "wordy" for the beginner. The concise

symbolic chart is generally used and implies all that is stated explicitly in

the "wordy" chart. Note the capitalized words: SUBSTITUTE and its equivalent,

/ 2 2 READ: EVALUATE and the equivalent explicit definition, Z = JX + Y : RECORD
/ I -1-1__\ J • A ! 1 L TIT-IT Him /TiTITTVim 3 TIT TTVTYTTT ^
^exi/ernany; anu j.1,0 equivalent, mini, vrn-Li'<-1- etna jruivun. tire synunomuuB. ;

Note also that both charts indicate that, after recording results correspond-

ing to a given pair of values, the next processing desired is indicated by a

l-ii^i/-. + *-\ + Vi /-. /-i-v.-ii-^T»'!«! QH"* A DT^ (iftniiQndo T.rVi -i(-»Vi no 1 l <->Q r> + Vi Q v>^v4- nniTi + <-i ~V\r\ -r\-v*t~\ ±XilC \J<<J Ull^ \Ji. X£<,X11CX_L. UJ-rtili OC^l-iCll^C Klll^U taUOCö Wl^ 11CAV/ _pcij. X l^W u^ ^x w —

cessed in the same manner as its predecessor. The process is to be continued

until the cards in the input-device are exhausted.

Next, we write instructions in the FORAST language to instruct the computer

to carry out the desired processes shown on the flow-chart. These instructions

fl-i-P Tj-rit.t.pn r>-n t.ViP <=t.nnriaT-rt HODTWr, PDRM srioun in •PTPTTTR^ ll.

16

PORAST CODING FORM

PROBLEM C906

CODER M.J.RomanellDATE 1 Jul 63 PAGE 1

H

LOCATION

1 6

ORDER
TYPE

7 10
FORMULAS STATEMENTS COMMENTS

CARD
IDEN

11 76 77 80

PROB C906 M.J.ROMANELLI ^510? EXAMPLE 1. 1

START READ(X)Y 2

Z = SQRT(X**2 + Y**2) 5

PRINT(X)Y)Z <£ GOTOfSTART) k

END GOTO(START) 5

FORAST INSTRUCTIONS TO CARRY OUT PLAN OF FIGURE 3.

FIGURE h.

AMXBR Form 2534-(R), Rev 28 Mar 63

-<ii one ^v^u-xiig, r^xiii. a,j. tr jjuui^ncu. wn CdiUb wii_i_ijn

can then be submitted to the computer. The cards corresponding to the in-

structions written on the Coding Form of FIGURE h. are shown in FIGURE 5.

'!wi vtai V • <

xxxx

oooo
t>14

xxx|

0000
5 17 1

. J„
I I T TIT T IT '•'••'. TTIIII

XXX||X|XXXX|X;XXXX
III;

o o o o| o o|| o o| o o o ojo 0 0 0 0 0 0 o'o 0 0 0
I it ii t2^i ii is iifir !• ii »I« 22 n .-'25 a 2! 2«|n *> :i .•:!« M JS a

I

xxxxxxxx'xxxx

T TTYiTYYY.TY Y Y|
i I

xxxx!xxxx'xxxx

OOOO'OOOC'OMO

 I i. i i I : i
YTYYIYYY* YYYY:YYYY:YYY HIYY YYYYYY1YYYY

I I I i I I I
x x xxjx x x xjx x xxjxx x xjx x x xjx x x xjx X X \\t X X X

oooo>oooojoooooooo'ooooil DO(r< i o o'oG0 3
37 V 7?«;<! U II «,lb IS ..' t*;» K SI U|U M S SIJ7 Si ii £lil Ü (1 MS U t! SMS1 7.

vvvv:vvvv

xxxx

0000
1114
. . . .1

xxxx

0000
9 17 1

""P
xx|||x|xx

0000

X X x xjx X x x| x| xtx x x||x X x x'x x x xjxX X X

o o| o|| o| o||| o o'o I o o||| o o^ o o o|o o o ojo o o o OD00
I It II 12 13 14 IS 1l!l7 I« II M'ü 22 21 »l?S IS 27 rsl.l IS 31 n'lS J« 35 It'll • 39 «111 «2 41 44(4"; <; 47 V.
 I. . . -4. . - .1- - . ..I. . - A... -.1. - - -I- . . .1. . . -I. - . .

V V vvlv V V VIV V V V
" ' "-II 111(1 I

XXX X|X XXX xxxx xxxx:xxxx;xxxx
III

oooc'oooc'ooooloooo'oooo
:.L

1111

xxxx
I

0000 0 000
1 ! 3 4l5 I 7 1

IT I I TIT I I II

xxxxxxxx|x||x|xx|||x|x|||xxxxxxx

oo|o|oo|o|oo'oo|ooooo
< It U12Ü114 li 1811/ II H2ll!&8 2)2«la.a27 2lLa jail SilllMJsallJ 31 S» «lill 42 43 44!ll It 43

T T T T

0000

HIT

xxxx

0000

TTTT

xxxx

Y Y Y TiT Y Y Yl

xxxx

oooo'oooccooo

T Y YY
.!..

xxxxxxxx

0000

XXXX.XXXXjXXXX

joon'ooca'nooa
ij 117; Bill '' 75 '5!!7 I 7» «1

YYYYjYY Y V Y Y Y Y YTY TYY YYYY YYjV» TT
! I i

xxx xjx x xxlx x x x!x X X JYJX X X X|X X x x '•< X X X

00 OOP 00000000090
1 Ü. -i ii.J it U Si.-.-" :4 A £äl4l «^ il UU U.

o o c c" i f o o i o o

YYlY

XXXI

YYYY

XXXX

• I a op o o o
I 2 3 4.1 J I 7 I

Y Y Y ••• YYlY Y YIYYY Y YY YYlY YY Y'YY YYlY YYY

XX|X

0000

XXXX

io|

YYYY

XXXX

0000
1*34

1111

YYYY

*A||

0000
5 i 7 S

1111

j ij n !?in |4 is i|

Y|Y||YYYY

• vvv'vvvv
|AA AIA A A A

0000|0|00

XX XXX XXXX XX xpt XXX

0|0 00 0 0 0 ; 0000

XXXX'XXXX

0 0 0 010 0 0 0 9 0 0 0

Y YYYY Y Y YlYYY YYYY Y

XXXX

0000
17 II 13 »1J1.22 7) 24]25 25 fl S » 30 Si 3?,'.' ". 25 *; ' 3» » «.li 12 43 44

0000

XXxnXXXXiXXXX

0000000 0

YY YY!Y Y YYiYYY Y YYYYYYYY YYYY

. . I i
XX X XT X XX X X Xx;xx xxxxxx xxxx

I i 2 I i
o o o o|o o o o'o o o ojo o n o'o o o o'o 0 0 0

YYYY

3 3 3 3j3 3 3 3

4 4 4 4 !.1 4 4 4

68S6

7777

6666

77|7

llfll

• .- a . •

•I YiYiY YIY|B YY||Y Y YY

000000 0C3 0 3 0

1 1 1 1 1 1 1 1 M I 1 l|l1 1 l|l

333|3333|3333|3|33333

I
000010 000

Y Y YY|YY YY^YIY|Y YtYiY|Y Y'YY YY Y Y YtYV Y Y

1.

1 1 1111 1 1j1|1 1

3||3;3 33 3

4 444 4 4 4|4 ; n

o o| GO o o o;o| o o
1J 31 J) 4jjV J7 11 II iS Lk 47 O

1 1 1 lit 1 • 1
i

2 2 2 2'? 2 2 2
i

3 3 3 3 3 3 3 3

444 4^ 4 41

3333

>39J -SM5J5.-, :a:av:7?6s.:'z:.r'

6 5 5 6 9 P i G5E

44 44 444 4'44 4|!4 4 4 M|44
.,M»=7'.:v 54',3iiC5i »4i';: ;74645t44',«4l

5 5 5 5:5 5 5 5:5 5 5 515 S 5 5i5 5 5|)| 5 5 5J5 5 5 5| 5 5 515 E 5 5| J 5 S

• - I I L I L. I I
I C 6 5 •• S I 6 6 6 6 6'S 6 6 01 6 5 6|5 6 6 615 6 6 E

! 1 i 1 i

7 7 7 7 7 7 7 Tj7 7 7 7:7 7 7 7)7 7 7 7
I , i j

c a ans a a 0 .-. p p s I a I 9? p s D

^77 77 77 7

YYYYYYYYjYYYY

V ¥ V V V V ¥ ¥l¥ ¥ ¥ ¥

0 0 0 0 il 0 0 0;3 D 0 0 0 0 0 0 0 0 0 0 3 0 0 (I 0 ? 1 O;0 0 o o
1^ ;0 1! 3? 57 V4 ?S 5*'-7 54 54 50;t1 U U |4 2S K 17 ,t 7 ,3 71 77 : :« "5 ^;'.' *B 7» 40

II 1 1|1 1 111 I l|l 1 1 I'M 1 1
1 i i I 1 t 1 1', ? 7 It t t 1^1 7 » t t •) 7 7

 l"j""
3|33 3|3 3 3 3 33 3 3 3 3 3 333

1 I 11 1 I 11 11 !|

J 3 3 3 i 3 3 i i 1 i 1

4 4 4 4 '. 4 4 4!« 4 4 4 4 4 4 4 4 4 4 4 i 4 4 4 4 4 4 4 M 4 4
:•) :4 !Ji - I 10 j ,8 ' C Sj-1 .i .' : >.!' :.i i 5 7 S • i; J "• :

5 5l 5 b 5 ? 5 ä 5 5 5*5 5 5 5 5 5 5 5J5 5 5 5j5 5 5 5 5 j 5 5

!i 6 « 6'S 6 5 8|6 8 S 6 8 6 S 6 S S 6 6|S S S Ss 6 6 S S 8 S S

7 I 7|l; 7 7 7 /| 7 7k 7 7 7!7 7 7 7l7 7 7 7!7 7 7 11 7 7 7

P R « S >R 8 fi P!R S fi H'S fl 8 B'3 3 B 8

r;T"T"T —
IDS 9

S R 8 fill 88'8 888 t t » I It It _:i. :.L...L...
99iSS9!"SSSS3»3S 999999919 99 919 9 9 9 9 8 9iS S S ||9 959 3S91I9 »9?;S998|93S 81» JJJ1 988J3 88

I 1 1 4 Ii < 7 113 10 11 12'!1 14 II II 17 U It S 2112 M 24 K » ?7 ai« 30 31 37,13 14 35 3» 37 » » 4»i4' 4." « '• '5 44 47 44J-S SI 51 H«! 54 Si »SI Mi»«*: t2 f.1 M*J II (7 M|M 70 11 1217171 75 7» 77 7» IK

 BRLESC FH «•• c

7777,7).* 7 / 777
i |

a 8 0 81« 3 8 68 8 8 8

....L..1...

FIGURE 5.

1.8

i-v^o r>-P "PTnTTRTT1 R + rMTo-h"hoY* tH+.Vi Pt f^xj r^n-ha r»Pir»Hc; l+.H^

cards on which we assumed the X's and Y's would be recorded;, are shown in

FIGURE 6. These cards represent the complete package to be submitted to the

computer to obtain the desired solutions

| Y Y Y:y Y Y YJY Y Y Y^ Y Y YjY Y Y YJY | Y Y'Y Y Y Y Y Y Y Y'Y Y Y YIY Y Y Y!Y Y Y YIY Y Y Y|Y Y Y Y'Y Y Y Y!Y Y Y Y;Y Y Y Y'Y Y Y Y YYYY|YY YYIYYYY
I

: i

Y Y YY'YYYY YYYYYYYYlYYYY YYYY|YYY!YYYYY|YYiYYYY!-YYY!YY Y YiY Y Y Y;Y Y Y Y!Y Y Y Y|Y Y Y YiY Y Y YIYYYY^Y YY'YYYY1

I I I I I I 1 ! i ! I I I 1 i

! ,'".",' . . i i ' i ill'
| Y Y YiY Y Y Y|Y Y Y YiY Y Y Y!Y Y Y Y I Y Y Y'Y Y Y YIY Y Y YIY Y Y Y^Y Y Y YlY Y Y Y'Y Y Y vit Y Y Y!^ Y Y YIY Y Y Y'Y Y Y Y'Y 1 Y Y*!Y Y Y Y Y Y Y Y!Y Y Y t

I I ! I I I J I ! ! !
YYYYiYYYYjYYY YjY t Y Y;Y Y Y YiY Y Y YjY Y Y YjY Y Y YjY Y YYjY Y Y Y|Y Y Y Y|Y T T YJYT Y Y!T II T " 1 T TJT 1 I It I l l

•j V V V* V
1 i 1 I 1

• via v •

I I I I 1 I i

Y Y Y YiY t Y Y Y Y Y Y

. .v vv v v •/ v V!Y v v v v V V v v V V YIY Y V Y,Y V Y Y Y V Y V i V V V Y Y Y YiY Y Y Y Y Y T YlY Y Y Y
III | I 1*4 I Iffl I II I I II'' I I* • • * I • • • r I'lt I* • i • • • * r B|" • * * j * " W » . • • T •

It'll

V V V V i Y V _
. . . 1,1 . a 'P" Y tg Y Y Y : Y Y T|i Y Y YjY I Y Y'JY Y Y T|Y Y Y YjY Y Y YjY Y Y YjY Y Y YjY Y Y Y|Y Y Y YJY Y Y YJY Y Y Y^Y Y Y Y|Y Y Y Y

YYYYIYYYY it* • V Y • Y V '.' V Y Y Y YB Y Y YiYl Yl.Y Vl ViY Y V VIVB v V • v Y .' v v v v v v v v v v v vlv v v v v v v Vv v v v,v v v v v v v v!v v v w „ . •••"•<••••••• • • >j> • • iji • • • p • i IIIIIIIIII ii •••••• I I ii • I i| I I I I {I i I i; I I I 1 [1 | ii, i |

Y Y | Y IY Y Y V

YYYY,YYYY

YYY|||YYiYYYii
,YYYJYYYY

• in i i i,i i i iii i i l

•wvvv.vvvvvv vvfu
 Ml I I l|! I I III

! ' ! I i I i ! I ! !
I I

Y Y Y YjY Y Y YJY Y Y YJY Y Y YjY Y Y YJY Y Y YiY Y Y YjY Y Y YJY Y Y YJY Y Y Y Y Y Y Y Y V Y YJY Y Y Y

'|Y||YYYY|YYYY|Y|Y|Y Y| YlY Y|1YY YYIY YYYJYYY Y|YtY|YY|YiY| YYjYYYY^Y Y YY:YYYY

o o o oio 3 o ti'n •] o e.3| n <•. i o o11 0 0 aio a 0 0
mu;i .•: u 2» J n 11 a n x ;i JJ'U M >S

0 0 0 0:0 0 0 o:0 0| 0:0 0 t Dj0|0 b
ja is «MI *.• «J «j« ««?«

i i . Ijl I 1 l;l I I n| 1 ii: t|l

)l'i):)Un)) 1 •> ? ? /!? 5 ? 1 *•* V - - -|- - - -j- * - -j
3 3 3|<3 3 3 3 3 3 3 3|3i 3 J 33 3

i ! r 1
4 A4 4 >4 U'4 4 4|!14 4 4I4|4 4

,.L. i I ' !
YV,Y¥YY;Y* Y» YYYYYYYY

Y Y Y Y|Y Y Y Y
I

oo'mti

1 I I ljl I 1 1]l|t 1|1 1 1 Ijl 1 • 1
I I ! ! »»????} VI 11 212 J2 2i2 222

4||3

4444

J i 1 iß 1 i i'i 11 i\s J i i

4 4 4|44 4 4(4 44 4 4 44|

1 2 3 < J « ' t

1 1 1 1 ji i ! 1

2 i' 2 2 2 2 2 i
I

33333333

4 s 4 4;4 4 4 4

5 j 5 S j a 3 j

8"€ 0 '3:6 6 3 L

77 7 717 7 17
1
1

8 8 8 ai3 S 3 G
I

..-,..<....• _ _ . rj 9 'ja 9 3 in ;>i a 1 in 1 3 >) 1 9 vi
lüt'iiii iii.iü'Jiin M ii !tii70iinn:i:SÄ2;2i(a!3 JI iiuMjSäs •?»«««! <>« ««.»aii «

BRLESC

i5 5 L JI J blj 5 5 55 5 5 5I5S5||55 5
i ; ! '^

• G C ü - J • t 5 0 B s 6 0 t £• 6 G [•

/ 7 7 ?;? 7 77'7 777 77 77 7 7 77

i 8 38 0 68858 o & fl EI S-8 8 8 8

7777

8888

55 5 5l55 5;d5 5 5| 5 5 5
r i r

J 0 8 luD000C0 00 0 0 BDü ö B
«sä si w:53 ;i M s>!i: «si soU. •; n sis*. «•' a,

II 1 i|l 1 l|l I 1 ljl 1 1 Ijl 1 1 I
| I ' I

22222222 22 221222 2i222 2

YYYY

Ii ü u U.UB 0 B,U U 0 U
»s ;c ii nri ;< » » .7 t f?»

11 1 1111 ljl 1 1|
' I

2 2 22 22 2222 2 2
j i

i i J UMJJJJJ

! i
44444444.4444

J • J J J j J Ji3 J J J;J J J J i i 1 1
I

44 44|4 44414 444:4 444 4 4 44

5 5| 55 3 5 5 5 S 5 5,5 5 5 5 5 5 5 ojä 5 b 5 3 5 5 i;5 5 5 5
I I I i !

iecjceccccccccc ictfcscc
J u a u J u ÜUI1UUÜÜUOUUUU

7 7 7 7|7 7 71|7 7 7 7 7| 7 7l 7 / 7iJ 7 7 7,7 / 7 7;J 7 7 7 7 7 7 7

88881388888 98,3888

U V U 1.' -• U « U "J u u u

777777777777

3 58 8 -I 3 b 3 888 388 8 3 8 3 «lU J 8 1 U »8 8 8 8

i I ! I I ! I
s I I t : ; ;, ; ; i, i a i i , J] « t) « o t ': H I I « Q «

• v J j •> -i j if 7 •* ,1 i J -J 'jgjiftfV'uvtPirwifwt*

IIS1Ü S. i, ••. KM:, Si 5« SC*I k, S3«« <A a7 Mill 71) JI Til D '' 1 7S T !• ?t M
I- ^ f, <l ? ' I c.

FIGURE 6.

Recall that we assumed the given input data, (the numerical values of the

X's and Y's), would "be recorded on paper cards in a "prescribed form". The

FORAST programming language provides for instructing the computers to accept

data represented on cards in many forms. A few specific forms are considered

standard, (i.e., those forms that are most convenient for scientific calcu-

lations and used frequently), and only departures from standard forms must be

specified in a manner provided by the language. The prescribed form chosen

for this example is referred to as standard "floating-point" form. This form

is similar to that generally called scientific notation, where numerical values

are expressed in a two-Tiart fomij one nart called the "coefficient"- the other

is called the "exponent". For example, the quantity 72.4-5 can he expressed as:

7.2^5 x 10 or .721+5 x 10 or 72^5. x 10
-2

etc •

'T'Vio haco ton na rro norol lir nim'+foH a n ^ +Vto +T.T^ _nQ T*+ -Ff~\-r*m i-ioor^ onnoip+p r\-P +Vi^

signed coefficient and the signed exponent. The exponent is restricted to

integers. The computers represent numbers internally in a similar manner, using

"hn nn vv nnt.at.i'nn instpafl nf röp>r»i mal In 0RDVAC- the base is 2- binare; in BRLESC,

the base is l6, sexadecimal. The use of other bases and forms is permissible and

means for transforming from one base or form to another base or form is provided.

For input data, some standard floating-point forms used are:

a.) Sign.ö decimal digits Sign,2 decimal digits

h.l Si^n 7 decimal dibits
and a decimal point

Sign 2 decimal digits

:•) Sign,11 decimal digits (no exponent)

r^ _ } P.n cyn .lfl ^P^ITTIPI r^i cri "h<^

and a decimal point

(n n pYnn n^ni".)

In the forms where the decimal point of the coefficient is not specified,

(forms "a" and "c"), it is assumed to be before the first decimal digit

punched. In each of the above forms, 12 columns of a card are used. Other

variations of these forms are permitted; however, in EXAMPLE 1. we used form

"a" for both input and output representations. As is conventional in mathe-

matical notation, the positive sign may be omitted.

To introduce some of the fundamental rules of the FORAST language, we

refer the reader to the standard coding form shown in FIGURE h=

Observe the division of the form into four general headings, namely:

T/VAT-mW f-|_6V ORTOTR TVPtf (T-lCi^- •RYTOMTTT.A RrjiArn^fmVpc; fn.7fiV n-nrt HART)

IDEN, (TT-8O). The numbers written here in parentheses, and written under

the general headings on the coding form correspond to the columns of the

paper cards on which the information will be recorded. The space allocated
x» T { -i £1 \ -I_T -1-I-.3 T r\r% A-rn-r/"\Tvr • — j -c» j j? j i _i ior cuiiMis {±-v)} laueneu JJVA^VXJ.UJ.1, IS reserveu lur naiuea oo reier uo s-uaue-

ments and pertinent data. Columns (7-10), labelled ORDER TYPE, are reserved

for classifying the information recorded in columns (11-76). Only a small

will be furnished later. Columns (II-76) are reserved for the formulas, English

word statements, and other data required to describe the processes necessary to

obtain a desired solution. Columns (76-80^- labelled CARD IDEN are reserved

for arbitrary identification of individual cards. Although not mandatory, the

cards are generally ordered in numerical order for easy reference so that if

and when the compiler detects a violation when it reads a card, the identifi-

cation recorded in columns (76-80) of the card is printed to identify the card

containing the violation.

±uc first card of each program submitted to the computer must have PROB

recorded in columns (7-10). Columns (II-76) of this card may be used to record

a problem number, persons name, title of problem, etc. The information recorded
«„ -t-V.-J„ ~„—J .! „ „I,•,,-,, •„„,, „-„,}„ J „„ J-V,„ ^J!„„+ „„„^ „-P +V,„ „,,4-„,.,+. +„ -i ,}„„+-! -P„ +V.«

subsequent results which follow, if any!

11 l»"\ •? /^ r* v-i •+- -l -£*•» r 4- lr\ r\ ln*r-* <-.-i »-i in T t-t r* t~.-P i~t T> -V*r~* j-.-v.r-i wi rt vi r-i -»^1^ -T +- -v»r-i m »• v-i n m/-, n j-tmvt r"% i-i ^* i^ r"N-r-* n 4-

most 6 characters must be recorded in columns (l-6), i.e., opposite the first

statement to be executed. In the example, we chose the name, START. Note

that commencing in column 11 of this card we wrote READ'X'Y the instruction

designed to start the processing of a data pair by copying in internal storage

the numerical values recorded on the first data card. Next, we wrote the

function to be evaluated. No doubt the beeinner will note the difference in

the conventional mathematical notation, Z = i/X + Y and the cumbersome

notation Z = SQRT(X**2 + Y**2). Unfortunately, the former is not acceptable

to the input media. In contrast, the latter uses a serial arrangement of

acceptable symbols or their combinations. Subscripts, superscripts, exponents

or other conventional symbolism which is not included in the restricted set of

^Viri "V»O f* •*" !~± "•»•» r-> O <""* *•» Q -l-i 4- «-* I-» I /-\ "V-ii i- -»vi VM i 4- -m .—v i-^ -l i~\ t~\ -*»».—. i-^ --\ m /-\4- .—v ,-H V-n r r*-r-\ r-\ /-\-\ r\\ i-iVin v*r* r-» "1" i—ivi c* -» v-i 4- Vi in
<~IICLX CL<_ OCX t> atLC_p OCLUJ-C Uj X lip Li U UlCUia QIC aCHU OCU Uj D_pCL XO,_L UliCiX O,^ OCX ö -1-11 one

restricted set or by combinations of them. For example} in place of the symbol

/ , we use SQRT () or ()**-5 enclosing the argument in parentheses.

TVIQ la + + or ovnro c ci r\n n nr^i r>nt.oc o-y~r»iTr..ar.+. n a +.i i^n » Q i^n +.V..Q "fnrjiis V X"X- p and

 . . . _ . . . „2 - -2 - - -
Y**2, which correspond respectively to X and X . The general i'orm or ex-

ponentiation is

(El)**(E2)

which represents the expression El raised to the E2 power. The equality

symbol, =, is used in a different sense from the customary mathematical meaning

in that even expressions such as

X=X+1 or U=Z=Y+ Z**2

are valid. The special meaning of equality is: EVALUATE the expression to the

right of the equality symbol, using values of the quantities that currently

exist in internal storage, then record the resulting value in internal storage

as the existing value of the function or variable whose name (or names) appear

to the left of the equality symbol. In the example, U = Z = Y + Z**2 the

22

^WlllpU.L»CL W_l__l__l_ J.J.XOO Q\^UCbl ^

existing value of Y and then record this result in internal storage as the

existing value of U and Z; the previous values of Z and U are erased just

Tior to the recording of the new value =

On line h of FIGURE h appear two distinct statements with the special

symbol, %, used to separate them» One msy write manv statements or svmbols

on a given line in the space provided. Each line of the coding form is

punched on a single card. Three lines (or 3 cards) would have sufficed for

EXAMPLE 1. as illustrated below:

PROB C906 1

START READ(X)Y <f> Z = SQRT(X**2 + Y**2)# PRINT(X)Y)Z$ GOTO(START) 2
L'IMII r>nmr\f &m*'Dm\ z
ElViU UUlU\QliiKl j j

The rules for the use of parenthesis will be explained later. The last card

carries the word END recorded in the ORDER TYPE space. This card serves two

purposes:

X . } 11 DlgUlllCD OU U11C 1' U1U1Ü1 ^l_UUp-L_l_CL U11C C11U Ul \J11XZ. UiailDXailUU (_>X

the F0RAST program into primitive machine language. The equivalent

of this card is not recorded in internal storage.

2.) The G0T0() statement recorded on this card directs the computer

to the first statement of the program to be executed. The first

statement to be executed need not follow the PROB card it msv* be

any statement in the program.

The GOTO(START) statement on line 2 is recorded in internal storage and directs

the computer to process every data pair following the first pair. The GOTO(START)

on line 3 directs the computer to commence the program with the reading of the

first data pair. It is not generally true that the processing of subsequent

cases begins with the first instruction of every program.

o*

CONTROL

ro

INPUT
CARDS

CARD READER

(input device)

-*»•

INTERNAL STORAGE

R E A D (X) Y /0 Z == S Q R T (X * * 2 + Y *

* 2) fo P R I N T (X) Y) Z <?o G 0 T 0 (ST

ART) fo

X Y Z

OUTPUT
CARDS

CARD PUNCH
(output device)

FIGURE 7.

Illustrated in FIGURE J are the machine components used to obtain the

solution of our problem. Note that the cards shown in FIGURE 6 are first

inserted in the CARD READER, (input-device)= The FORAST compiler causes the

five (5) program cards to be read and the information on them is recorded in

internal storage as illustrated. When the compiler recognizes the card with

END punched in columns 7-10; (the Sth card), it directs the control unit to

commence executing the instructions that have been recorded in internal storage.

Note also that in addition to utilizing space for the instructions in internal

storage, space is also reserved in internal storage for the numerical values

of X, Y, and Z. Each time the computer carries out the instruction, READ(X)Y %,

the numerical values on the card at the read station are transmitted and re-

corded in internal storage, the card itself being moved to the storage bin.

Next, using the existing values of X and Y currently in internal storage, the

computer evaluates Z =V^ X^ + Y^ and records the numerical value thus obtained

in internal storage. To carry out the next instruction, PRINT (X)Y)Z %, the

control unit activates the CARD PUNCH and records on a card the numerical values

of X, Y, and Z that currently exist in internal storage. This completes the

required processing for a given data pair, (X,Y), and then the instruction

GOTO(START) directs the computer to READ the "next" data pair and process it

in the same manner as the previous pair. After all of the cards in the CARD

READER have been read and processed, the computer stops and one obtains the

results in the form of the punched cards from the bin of the card punch. A few

of these output cards are shown in FIGURE 8.

A tabulation of the FORAST program, the input data, and the results

obtained are shown in FIGURE 9-

I T TTjTTT

xxxxjxxxx

n n

** Y Yl Y Y Y|Y Y Y Y Y| Y Y 1 Y Y Y YYYY

xxxxlxxxx!xxxx'xxxx!xxxx|xxxx

YY YY|YYYY

XXXXJXXXX

•••••••
3 4 ; s i *]>

D " !) ' ()••••••• na in nmmm nnn'nnnnnnnn
- - - "•••••••"I"" "MWM V U L7L' U U U," U U N
i? :' i: u 15 V; t' '(•'' f.|

YYYY

XXXX xxxx

V 73 'H! K Tl 3p JO 31 JM; 51 ft «ill 3 J3 «4i i; 43 «l> U n V

YYYYJYYYYiYYYY

X XXxlx* v v IT
YYYY YYYY

y y y y

fiOlM

YYYY

V V V V

^ 0 P 0

YYYY'YYYYJYYYY

9 n <) 010
. I. - — . I.

YYYYiYYYY YYYY|Y YY;YYYY!Y|YYJYYYY

x x x x|x x x x x x x x!x x x xix x x ix x x y'< x x x

ofiii •!• n n i

1 ' '• 4 5 I ' «jS It i IM.' '4 IS 111' I! i» ~; • .1 -J); ft 7171 n

i' i i! m'l 11 iji 11 iji 11 i.i i i|t n|

YYYYJYYYYIYYYYJYYYYIYYYYJYYYY'YYYYIYYYY

n nAJVAAAAAA AA|A A A A j ! j !""""" "
ü vuGJG GG Qjüöö Dö 0 0 OjG fl f) 0
»MÜ IJj.lJ J* ^ ^ J; ^ » «I'll •', * «4- V,41 44

n i ijn n|n i ill m|i i ii

• I« « 4 4 I« • « «I« « i «1« . « •]. « ^ 4 i, , , , 1. , 4 ,

YYYY YYYYIYYYYIYYYY'YYYY

9 o o o;o 9 o 0;Q o o o<a n o O'O o o c <I o o fl

1111i111 111 11 ill 11 ill 111

* * AXIXXXX'XXXX
'
°iiMir

I YYYJYYY Y

X XXX XXX X

YY YlYYYY YYYY YYYYiYYYY
i

YYYYIYYYY

X X X XX X X XX X X XX X X X'X X X XIX X X X!X X X X

i L i

YYYY

X X X X

YYYY

XXXX

YYYYYYYY

XXX» XXXX

YYYYYYYYYYYY

x xx xxxxxx xx

YYYY

11 Mil 1 1 l>i

YYYYJYYYY|YYYY

X X Y XIX X XXX^XXIXX YX

I
, lllllll " w w«>J|||||||IJ'' " •' -'lllllll u u u u u II I.I ö 'j a UM Li (j u
'14' ir4 ic ii '< '; I'' '* is r •• n "i|ii >; ?3 v j 3 i' *3[w W3i J: U .- o :•':> 3* 3«>;i *~ 11 4iU* -K i <»

t 11 1! I : iji 1 !|H I Mjl t 111 I 1| 1| 1 iji 1 1 l'l 11 ill 11 ill 1 1 11 I 1 1
I i ! I '

U U !l u;u I) U U 'J B U Uj'J U 0 H^n 0 U «HP I! n ö!B
" « » SI Vr'u M "5 »y II SB Ulli 'A t n\K >t H «

lllllll 11 11 ill 1 Mil 1 II

IIIIII
^ M II Mil ii "1 '

1 f I iji 11 III .

V Y Y Y Y Y V 1 YYY.YYYY|YYYY;YYYY:YYYY

Y y Y y • x y y'y v y y.y y y yiy y v y

lllllll 'lllllll "0

YYYY

v y y y

YYYY|YYYY

X y y y'y y x X

00 0 D 00 0

.1
YYYY YYYY YYYY YYYY'YYYY

yyyylyyyyyyyyiyyyy

YYYY

v yy v

nsc c a« ofioc ü 00Qoofloooaeon
'4 75 ?fl• •l*7*"vi~ 7^' 14* Vh' »31 lri(l 4? *• 41 " 4* 11 **•**» S3ff! s:L'.154H 5bi*T 31 S9 W'«l t? 13 «1» W !1

YYYY

XXXX

0000

ini'iM MiiiniiiMn)

YYYYiYYYYjYYYY

y y y'v y y y'v v Y y

tU Y 1" YlY Y Y YY Y Y Y!Y Y Y YIY Y Y Y.Y Y Y Y

X V ', vX X X XiX X X X X X X X;X X X X'X X X X;X X X X
: I i i : i , IIIIII'Inoc ni)|||||||ooo^oon

1 7 ' « ' 5 Ä ' S j'< i' ! "* iS i£ w" • 5 t*»?i " " U "" .* " -•''

ill i 1 1 1 "I 1 II 1 M 11 1 ' 1 t| I l|

I I 1 l;l 1 1 11 1 11 i i 1 I II I till 11 l 1 1 l|l 1 I Iji 1 ill l 1 1
j i i ! : ; .1

Y Y Y YlY Y Y YlY Y Y YlY Y Y YlY Y Y Y|Y Y Y Y|Y Y Y Y-Y Y Y Y Y Y Y Y: 1Y Y Y

ooon linn?

i n i h i n M

f. AA A'AAAAiAA A f f *. A A A A AÄiA H A A I* A AA|A A AA

3 V: 3 3? \ 3 3 i 3

' V w V V V W 1/ w W V W-V V V V VVVVVVVVIVVVV

I
oonojoono'ao8o<• sosn oe ?r oo•".«n op?r^nooo«?r ;• oo

1 II HI ! il'l 1 1 I'M M'l 1 1 ill 1 MÜ 1 1 lit 1 lljl 1 1 l|l I M
- i : | j j

3 3 3|) 3 3 3,3 3 3 ?!'; ? 3 3'3 3 3 !'3 3 J 5.3 J 3 ?l3 3 3 \l 3 3 3]1 3 3 3
t

,J i j ,t • i|.s 4 • I 4 4 i 4:4 4 4 t •; 4 M 4 '.{ l| <1 4 > M M.I M 4
:- « Mi1.£ •• i •

4 -: :»in 4' ' •" i / 4 4 4: 4 4 4;444 4[44 44
•4rjv•, v'. /-..- !-.*•-•,'-'• r*

I
CCCCCCRKCKLI. i.«;i:K

vJJ<lJJJ«4ww'J'
I
L I i -I- -

6 fi 6 R fr ; ft t ü b f E 6 e 6 6 6 6 6 6;S S 6 6 J> 6 S 6j8 6 fi 61 6 6 6 <i R S S|8 B 6 C 5 B S E

7 7 7/777/

3999996?
* * t ä % i ' i

7 / ? 7 7 7 7 / 7 7 7 7 7 -1 ' 7 7 / /n 7 7 M 7 7 /;7 7 7 7J 7 7 7jM /)

I i i

i i i ..
9999': 3999993 9 9999S9? n i9r'3 99c9 998*9 99 9 9 ' '11

RRLESC
la.-ir«..-! ?i Jih :-i " 'J i « st ; u :"«c-ti i; « i 4' 454; 1

:•• 1 .. ''!<. 14 111 ' iO'l Ii ' (5

ii 'I S IS -i •; s!s S S "iiS S 5 s «"--,"-• -J- - - •-
6 fi 6 £ S 6 6 els 6 6 s'sSSfi

, I 1

7 7 nh 177I7177I777 J

M « A HH fl II R'B I I X!R 8 H R

» 3 '
5555

6666

7 7 7 7

3 8 SB

0 9 0 9:5 9 3 §') sg?'9 390899S
': •« >i;.',: 5t •>! <* ;? M H >«l|i n ii nl.i f« ;i K

• 0 c »' ii <"

!

YYYYjYYYY YYYY

0 n r o'l'ilim 0
'4 '3 it* ii r '

1 M l}1 M 1;1 1 I

7?? ii|; • 7 »!? 7 ? ?

33 .1

444 4 M44'!-: M

S S 5 s;5 S 5 hiS b u S

 L . . -I. . . .
blitjBbbbbbtioO

77 77

8 I J 8

3 9 Si H
B JO 11 1?

I

7 7 7 7J7 7 7 7

18 1 8J8 S 8 8

sSS»i9S»ä
n 14 null; Una

T-1T /~<T rmri Q

26

A tabulation of the: FORAST program, the input data, and the results are shown in 23 JULY, 63 PAGE i
FIGURE 9. PROB C906 M. J .ROMANELLI 45107 EXAMPLE I. 1

START KEA0(X)Y 2

Z=SQRT(X*#2+Y**2) 3

PRINT{X)Y)Z«GOTO(START) 4

END GOTO«START) 5

10000000 01 10000000 01

30000000 02 40000000 02

-80000000 01 60000000 01

75000000 00-50000000-01

-40000000 01-50000000-01

KAY.23,63 BKLESC FORAST F62

45107 EXAMPLE 1,

0000001

0000002

0000003

0000004

0000005

iro
PROB C906 M. J.ROMANELLI 4

10000000 1 10000000 1 14142136 1

30000000 2 40000000 2 50000000 2

-80000000 1 60000000 1 10000000 2

75000000 -50000000-01 75166482

-40000000 1-50000000-01 40003125 1

FIGURE 9.

To illustrate a convenient means of identifying the "output" produced by

the Computer, We COnSiuer an auuii/iuiicti reiiunemeia xn une pruuiem u± £*/vtti»ir ±J£J X.

In particular, we require that the letter X be printed (approximately centered)

above the columns corresponding to the numerical values of X, and similarly the

letters Y and Z centered over the columns that correspond to their respective

numerical values.

n n T.Ta
XL) pi Uviu." L-IiJ-b .x t_x v_ _i_ _i_ _i_ vj y x wiuiUJ. u^^v-pi/u <-x XJ.V_I_J.IJ. -J I_"_X <-"-

enclose in "special quotes" the literal characters that are to be printed. The

"special quotes" are the less than and greater than symbols, < > . The PRINT

statement takes the form

PRINT < >

and all characters within the < and > symbols are recorded on the output card.

For our purpose we write:

PRINT < X Y Z >

Since the numerical values of X, Y, and Z require 12 characters in the standard

form of output that we obtained, some spacing between the letters enclosed

within the < > is necessary if we desire that the letters be approximately

centered over their respective columns. Hence if we Cnoose ^o nave one icooer

X over column 6, Y over column l8, and Z over column 30, we indicate this spac-

ing by writing

PRINT < 6b) X (llbj Y-^Llb).Z >

where the circled quantities, feb\ , (litt , and Ql^ indicate to a key punch

operator and hence to the computer the number of "blanks" between the literal

characters. (This is the only place in the FORAST language where "blank"

characters are not ignored! i.e., blank characters are ignored everywhere

except between the < and > symbols of PRINT statements). Knowing how to

achieve this convenient identification, our immediate problem now is to deter-

28

« l i 11 n • i If IT» • L .? __ J J_l-_ * ~J *1 O T7TV A TifTiT T71 n mine now xo nx xnis requirement into xne original program ui rjA>u»iriiCi i.

More specifically, if we recorded the above PRINT statement on a card, what

is its logical place in the original program? If we inserted it between

carus p anu H-, i.e. , in ii'uiiu ui une uaru OII&L. AUB ui uu UB UIIC UUJIIJJUUCI uu

PRINT the numerical values of X, Y, and Z, we would obtain the printing of

the literal letters X, Y, and Z each time the PRINT < X Y Z > was

encountered. FQRAST instructions are executed in sequence one after another

unless a specific instruction directs the computer to do otherwise. Since we

require the identification to be printed only once, a logical place for the

identifying PRINT statement is at the verv beginning of the Tvroerani. Con-

sequently the following program will produce the desired results.

PROB C906 M.J. ROMANELLI EXAMPLE 2. 1

ADDREQ PRINT < ($h) X (lib) Y (lib) Z > 1.1

START READ^X^Y 2

Z = SQRT(X**2 + Y**2) 3

PRINT(X)Y)Z <fo GOTO(START) h

END GOTOfADDREQ) 5

Note that card 5 differs from the original in that instead of directing the

computer to begin by reading a card at START, it directs the computer to begin

at ADDREQ where it is instructed to print a card with the desired X Y Z

heading. The above program and the results produced are listed in FIGURE 10.

29

PROB C906 M.J. ROMANELLI

ADDREQ PRINT< X

START READ|[X)Y

Z=SQRT(X»»2+Y**2)

PRINT(X)Y)Z* GOTO(START)

END GOTO«ADDREQ)

lOOOOOOO 01 10000000 01

3Ü000000 02 40000000 02

-80000000 01 60000000 01

75000000 00-50000000-01

-40000000 01-50000000-01

EXAMPLE 2.

Y Z>

23 JULY,63 PAGE 1
1

,1

2

3

4

5

MAY.23,63 BRLESC FORAST F62

PROB C906 M.J. ROMANELLI EXAMPLE 2.

o

10000000

30000000

-80000000

75000000

-40000000

1 lOOOOOOO

2 40000000

1 60000000

1 14142136 1L

2 50000000 2

1 lOOOOOOO 2

-50000000-01 75166482

1-50000000-01 40003125

0000001

0000002

0000003

0000004

0000005

0000006

FIGURE 10.

NAMES AND OPERATIONS

EXAMPLE 1 & 2 illustrated the substitution, evaluation, internal-external

recording and controls required to obtain a high-speed digital computer solution

of a simple problem. Common to each of these processes is the fundamental re-

quirement for identifying particular quantities and operations of interest.

FORAST uses names constructed from a restricted set of symbolic characters.

In EXAMPLE 1, we used the symbolic names X and Y to identify variables, Z to

identify a particular function, SQRT another function, •* and ** denoted parti-

cular arithmetic operations, READ and PRINT as names of recording operations,

and START to describe an instruction.

To avoid ambiguities in the definition of names, operations, and numerical

values, the U9 characters of the FORAST language are divided into two classes:

Class I . • A B C • • • Z 012 • • • 9 38 characters

Class II + -*/()= <jo , 11 characters

The characters of Class II have special meanings and must not be used to define

non-indexed names of variables, functions, statements or other parameters.

+ is used to denote addition

is used to denote subtraction

* is used to denote multiplication

/ is used to denote division

$ is used to denote end of statement

= is used to denote (equality) evaluation

, is used to denote an indexed ^subscripted; name

** is used to denote exponentiation

< is used to denote "less than"

> is used to denote "greater than"

() are used to denote multiplication, enclose arguments, indicate
order of operations, separate names, parameters, numerical values,

31

i$> is used to denote that the information on a card following the
ffft is to be ignored by the computer.

Non-indexed symbolic names of variables, functions, statements and para-

meters may be constructed by combining characters of Glass I under the follow-

ing restrictions:

1. The leading character must not be zero and at least one character
must be other than a decimal digit.

2. Non-indexed names must not exceed 6 characters in length unless
those after the first 6 are not required for unique identification.

3. The special names such as SELF, SIN, COS, READ, PRINT, etc., have
been reserved and should not be used as arbitrary names. (A complete
list of reserved names is given on page 69 of [_1.J •

h. Names of indices should not exceed three characters in length, k are
permitted only if the rightmost 2 are decimal digits.

Despite the above restrictions, considerable freedom in the choice of names is

permitted as illustrated in the examples given below:

X X' BOX 1. X3VEL. LAST

10 XDOT 1B0X Z" SINA

ITA XBAR YACC DZ" TANX

IX START VELZ 8.9 BETA2

v-i SAM FOURTH 10.2.^ 9GAMMA

X15A WORK Y" A.'B1 DELTAX

F'300 N.Y. L.A. FLA. TEMPO

EVALYS EPS RHO ATPRES DENSTY

FOFX FOFY FOFZ FOFZ" FINIS

Many problems require the processing of groups or arrays of numerical

data, particularly discrete functions, vectors, matrices, etc. Conventional

mathematical notation provides identification by subscripts or indices. For

example, X., (i = 1,'d, ,n; Ij, U = U,i,4, ,m; Jy

32

In the FORAST language, we use the special character, comma, to denote an

indexed name; i.e.,

X. is represented as X,I

Y. is represented as Y.J
J

Z. is represented as Z,K

As is conventional in mathematical notation, the indexed names take on specif:

meanings which depend on the name before the comma and the existing value of

index whose symbolic name appears after the comma. Flexible and convenient

means for setting and manipulating index values is provided; however, it is

important to recognize that the internal form of representation for index

values differs from the floating-point representation discussed previously.

Index values are restricted to a limited range of integers and consequently

combining index values and floating-point values is not permissible. The

language does provide for transforming from one form to another. The con-

venient use of index names and means for establishing and generating desired

values for them will be illustrated in later examples. The index names were

introduced here briefly to indicate the general means of identification by

symbolic name permitted in the FORAST language.

We introduce next the means of denoting the fundamental arithmetic

operations of addition, subtraction, multiplication and division, which are

denoted by the special characters, + - * and / respectively. Hence, the sum,

difference, product and quotient of two quantities, A and B, are expressed as

follows:

A + B

A - B

A * B

A / B

33

The special symbol, "*, is used to denote multiplication to distinguish the

product A times B from the single quantity, AB. Other means of denoting a

product are

or A)(B)

or A)B

or

or even the redundant symbol, *, is permitted in the above forms. In general,

parentheses may be used to denote multiplication or to group operations in any

desired sequence. In the absence of parentheses, particularly in ambiguous

expressions, priority rules govern the sequence of operations.

When the order of operations is not specified, the established priorities

are as follows:

1.) Single-valued functions of one argument;

2.) Exponentiation

3.) Multiplication and Division

k.) Addition and Subtraction

Next, we introduce the means to denote evaluation of the convenient

elementary functions such as sine, cosine, square root, etc. These functions

are denoted by special names as is conventional in mathematics. For example:

sine is denoted by SIN

cosine is denoted by COS

J is denoted by SQPT .

We classify these and similar functions as single-valued functions of a single -

argument. (This is not to be interpreted as a single-valued function of one

variable, on the contrary, the argument may be a function of many variables and

indeed many other functions. We emphasize the classification of this set of

convenient functions to distinguish them from another set which includes

functions of more than one argument).

3k

A = i + Zi T w implies x = y + zw

since multiplication has priority over addition.

X = Y - Z/w implies x = y - —

since division has priority over subtraction.

X = Y + Z ** 2 implies x = y + z2

since exponentiation has priority over addition.'

X = SIN(Y+Z)**3 implies x = sin5(y+z)

since single-valued functions have priority over
PYnAnon+iQ + I An

35

This example is given to illustrate the single-valued functions of single-

arguments that are available in the FORAST programming language.

•DTTinTTTD'nvn.

Numerical values of two variables, x and y. Assume that they

J3T»Q ror*orded in standard floatincr="noint form on a _nunchsd card.

For simplicity, we will let x = 1 and y = 2.

Compute the following functions; identify and record each

function on punched cards.

A - VY
B = sin X

C = sin xy

U = sin

E = sin 5x

F = sin (-x)

G _ nnQ x

H = cos (x + it)

I =/n(y + Jx)
.1 = Incr (v)

"D10w '

K = eX + y

L = arctan (x - y)

M = arctan (y)

N = arccot (-x)

0 = arccot (y)

P = arccos (x/y)

Q = arccos (-x/y)

R = arcsin x/5

S = arcsin (-x)

T = tan xy

TT 4.„„ I ~\
U UCL11 ^ —A J

V = cot (y - x)

w = cot (-y)
FX = sec x

FY = esc y

Fl = sign of x

F2 = siern of (-x) t_>— \ —/

F3 = sign of (y - y)

Fi+ = sinh x

F5 = cosh x

F6 = tanh x

FT = integer part of A

F8
=

fractional part

. 2 2

of A

F9 = sin y+ cos y

56

Tne program, input and output for this example are ustea in niiUJtttü J.ü.

BEGIN

X =

Y =

COMPUTE, IDENTIFY & PRINT

SQRT(Y) =

SIN(X) =

A = y ; Print:

B = sin x ; Print:

v_» — 0111 3Ty y iiiiiu.

.2 2 „ , ay = sin y + cos y ; .Print: (JJlhJUK

FLOW CHÄET FOR EXAMPLE }.

FIGURE 11.

57

PKOÖ C906 M.J.KOMANELLI EXAMPLE}
23 JULY,63 PAGE

BEGIN

CD

COMM SI
KEA
PR I
A = S

S

= s

END
lOOOOOOO

E = S
F = S
G = C
H = C
[=L
J = L
K = E
L = A
M = A
N = A
0 = A
P = A
U = A
K = A
S = A
r = T
U=T
v=c
w = C
FX =
FY =
Fl =
F2 =
F3 =
F4 =
F5 =
F6-
F7 =
F8 =
F9 =
GOT
GOT
01

NGLE
0(X)
NK
QRT{
IN(X
I ist (X
I >! (^
IN(X
IN(-
OS(X
OS(X
ÜG(Y
ÜG10
XP(X
RCTA
KCTA
RCCO
KCCO
KCCO
RCCO
KCSI
RCSI
AN (X
ArMl-
OUY
0T(-
SEC(
CSCI
SIGN
SIGN
SIGN
S1NH
COSH
TANH
WHUL
FRAG
(SIN
0(N.
OIBE
2000

-VA
Y

X
Y)£
U
•Y)
•X)
•5)
X)*
U
«- 3.
+ SQ
(Y)
• Y)
N(X
N(Y
T(-
T(Y
S(X
S(-
N(X
M(-
• Y)
X)%
-X)
\)%
*)%
Y)$
IX»
(-X
(Y-
(X)
(X)
(X)
E(A
T(A
(Y)
PriU
GIN
0 00

LUED FUNCTIONS OF ONE ARGUMENT

= >X
PR I IM

PRINT
i; PR I
% PKI
% PRI
PR IN

PRINT
14159
R T (X)
% PRI
% PRI
-Y)S
)% PR
X)4i P
) i, PR
/Y)2
X/Y)*
/!>)«
X)« P
% PRI
PR IN

« PRI
PR IN
PR IN
PR IN

% PRI
) * PR
Y)* P
% PRI
ig PRI
% PRI
) ij PK
) % PR
»#?+C
B)
)
0 01

Y = <
T<
<
NT<
NT<
NT<
T<
<
)'* PRI
% PR IN
NK
NT<
PRINK
INK
RINK
INK
PRINK
PRINT

PRINT<
RINK
IMK
T<:
IMT<
T<:
T<
r<
*K
1NT<
KINK
NT<
NT<
NT<
INT'
INT"
OS I

>Y
SUR
SIN
SI
SI
SI

SIN
COS

MT<
T < L N
LOG
EXP
ARC
ARC
ARC
ARC
ARC

<ARC
ARC
ARC
TA

TAN
COT
COT
SE
CS
SI

T(Y) :
(X) =
N(XY)
N (4 X)
NI5X)
(~X)
(

>A
>8
= >C
= >u
= >E
>F

X) = >G
COSIX+PI)

(Y+SQRT(X)
10(Y) = >J
(X+Y) = >K
TAN(X-Y) =
TAN(Y) = >«
COT(-X) = >N
COT(Y) = >0
COSIX/Y) = >P
COS(-X/Y) = >
SI NIX/5) = >R

= >H
= >I

>L.

SI

<
<
Y)

SIN(-X)
N(XY) =
(-X) =
(Y-X) =
(-Y) =
C (X) = cm =
GN(X) =
GN(-X)
SIGN(O)
NH(X) =
SH(X) =
NH(X) =
OLE(A)
ACT(A)

SI
CO

FR
• 2)»*.5* PRINK

= >S
>T

>U
>v

>w
>FX
>FY
>F1

= >F2
= >F3
>F4
>F3
>F6

= >F7
= >F8

CHECK >F9

1
1

2
3
4
5
6
7
8
9

10
111
L2
13
14
15
16
17
18
19
20
21
2 2
2 3
24
25
26
2 7
2 8
29
30
31
32
33
34
35
36
37
38
39
40

MAY-23t63 BRLESC FORAST F62
PROB C906 M.J.ROMANELLI EXAMPLE3

X = 1OOOOOO0 1 Y = 20000000 1
SQKT(Y) = 14142L36 1
S IN (X) = 84147098

SIN(XY) = 90929 7*3
SlN(4X) = -75680250
SIN(5X) = -95892427
SIN(-X) =. -84147098
COS(X) = 54030231

COSIX+PI) = -54030454
LNIY+SQRTIX) = 10986123 1

LOGLO(Y) — 30L0 3000
EXP(X+Y) = 20085537 2

ARCTAN(X-Y) _ -78539816
ARCTANlY) = 11071487 I
ARCCOr(-X) = -78539816
ARCCOT(Y) = 46 364761

ARCCOS(X/Y) = 104 71976 1
ARCCOSI-X/Y) = 20943951 1

V>J ARCSiN(X/5) = 20135 792
MD ARCSlrt(-X) = -15707963 1

TAN(XY) = -21850399 1
TAW(-X) = -1557407 7 1

COr(Y-X) = 64209262
COT(-Y) = 4b765755
SEC(X) = 18508157 1
CSC(Y) = 10997502 1
SIGN(X) =. 10000000 1

SIGN(-X) •=: -10000000 1
SIGN(O) = 00000000
SINH(X) = 1175201,? 1
CUSH(X) = 15430806 1
1"ANH(X) = 76159416

WHOLE(A) = 10000000 1
FKACT(A) =. 41421356

CHECK = 10000000 1

0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000008
0000009
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017
0000018
0000019
0000020
0000021
0000022
0000023
0000024
000002 5
0000026
0000027
0000028
0000029
0000030
0000031
0000032
0000033
0000034
00000 35

FIGURE 12.

Restrictions on the single-valuea functions of one argument illustrated

in EXAMPLE 3 are:

1.) Every argument is enclosed in parentheses, the closing right

parenthesis is optional.

2.) Every argument and every result is in floating-point form,

3-) The arguments of trigonometric functions and results of inverse

trigonometric functions are in radians.

h.) The results of ARCTAN and ARCSIN are in the interval

It _ _ . It
- T> < Result < ^

5.) The results of ARCCOT and ARCCOS are in the interval

0 < Result < it .

6.) The arguments may be functions of many variables and functions;

however, only the sign of the resulting argument is considered in

the evaluation of the particular function.

Although not illustrated, names of variables, arguments and results may

be indexed. Violations of restricted bounds of arguments will be detected and

recorded durins the execution of the program.

ko

&\AMtLiü 4-.

EXAMPLE 5. illustrated the available functions of one argument. Another

set of convenient functions are those which are functions of more than one

argument and often produce more than one result. Included in this set are

methods for interpolation, quadrature, matrix operations, solution of ordinary

A A f-To7>OTl+ A Q I Ä^I-llO + A r*.T-i r- ö 4 r". T^ A .-. ^ 4 T-. i _i 4- 4-V. ._. nortttMi+^wn 4.-. ,-. --r- I i . n 4- ~ -P-i-.--. ~ 4- 4 -.-, -, uinciClltiaj. t^ua^lULIü • C OU • J.t_. liJO l;l Ulj U L«11C ^V;Ui^Lll;Clf3 L**_. C V d_L U.CL OC X LU.1L. O XKJILO

in this set we write a statement of the form,

-I_IX.-I.J_IJ. L ^ _. I_V_I-V_ -A Lyi_*x <.__*_• _i_i-i_b_. J. un_ v_-«—'xiy HJ-yn --_ y •/-

where the word ENTER followed by a particular name enclosed in parentheses

identifies the particular function or method of interest. The N1,N2,

represent the names or values of the arguments, parameters and the defining

names of the results. Many of the available functions in this set will be

illustrated in separate examples.

To introduce one of these functions, we will consider an extension of

EXAMPLE 1. Assume that the given pairs (x,y) represent the rectangular

coordinates of a point in a plane and that we want to produce a table which

includes the corresponding polar coordinates of the point, i.e.,

GIVEN: x. 1,2,3,

f^vivi^-^rt^rln vi/. 4 r^ ,-. #-i ,-. V, _,-^^+ t -r -^ ,3 _. 4 -~ ? ~ -. _" A „ „ 4- _* -£> _

list in a table the polar coordinates p. and &. (list & in

degrees).

/v 2 2 o. = .1 X. + v.
•"i v i • "i

&. = arctan (y./x.)
l wi' l

41

Before constructing the flow-chart and writing the program which will

produce the desired solution we emphasize the distinction between the available

arctan function of one-argument illustrated in EXAMPLE 5, and the arctan

function of two-arguments to be used ana illustrates in tnis example, me

distinction is that the arctan function of one-argument produces a result which

lies in quadrants I or IV. (Note h. on page 38 > -£ < Result < n). Since
2 2

the arctan function of two arguments take into account the signs of both

arguments, it produces a result which may be in quadrants I, II, III or IV, i.e.,

-it < Result < it ,

START READ PT
1

PRINT: column identification

X y RHO THETA

READ:

\ * y
P

r
y i '

arctan (y/x)

= 57.295780 er.

\ >

X

PRINT:

y p ^

PT/UJ rTTARTi VHR VYAMPT.T? k

FIGURE 15.

k2

The program, input and output for this example are listed in FIGURE Ik.
^ * 2 3 JULY,63 PAGE 1

PROB C906 M.J. ROMANELLI EXAMPLE 4. 1

COMM TRANSFORMATION OF RECTANGULAR TO POLAR COORDINATES 2

START PRINK X Y RHO THETA> 3

REAÜPT READ(X)Y£ RH0=SQRT{X#X+Y*Y) 4

ENTER(ARTAN)Y)X)TH 5

TH=57.295780»TH 6

PRINT(X)Y)Rh0)TH* GOTO(READPT) 7

END GOTO(START) 8

10000000 01 10000000 01

30000000 02 40000000 02

-80000000 01 60000000 01

75000000 00-50000000-01
-p-

^ -40000000 01-50000000-01

MAY.23,63 ÖRLESC FORAST F62

PROB C906 M.J. ROMANELLI EXAMPLE 4. *

X Y RHO THETA 0000001

10000000 1 10000000 1 14142136 JL 45000000 2 0000002

30000000 2 40000000 2 50000000 Z 53130103 2 0000003

-80000000 I 60000000 1 10000000 2 14313010 3 0000004

75000000 -50000000-01 75166482 -38140749 1 0000005

-HOOOOOOO 1-50000000-01 40003125 1.-17928384 3 0000006

FIGURE lL.

In the previous examples, the output results were recorded in standard

floating-point form. In this example we will illustrate a means of obtaining

the tabular results in a form with the decimal point actually punched (and

printed) instead of the exponent. For example, instead of obtaining the

printed value for J2 as lUlU2136 1, we will obtain the printed value for

J2 as l.i+lU . This example will illustrate a special case of the general

PRINT statement where a departure from standard form is desired and must ba

To designate a non-standard form, the PRINT statement is written in the

form

•n-D-r-Mm -cinr>MAm /TVT--*•^ ,->-P ^-^^,^-,-i p,,-; -^ rr -Pr-.-^m\ (W \ oL ri\±L\x-r wru'JMJ. _iMeiuie ui D^cuii^xug lOiIH; - ^) j • • • } /0

where the "Name of specifying form", enclosed in parenthesis after the word

FORMAT, identifies a quantity which explicitly defines forms and horizontal

spacings desired» We refer to this specifying quantity as a "format word".

To provide for arbitrary spacing of the output forms and for transformations

from internal to external forms the format word is composed of parenthesized

expressions of the form

(T - S - L)

where T, S, and L are decimal digits with defined meanings:

T generally specifies a type of transformation, a repetition of a

previous format, spacing of quantities, end of format, etc. ;

S generally specifies a scale or relative location of a decimal point;

L generally specifies the length of a field, i.e., the number of

columns or characters to be used in representing a given form.

The parenthesized expressions may contain ail three of the above descriptors,

(T - S - L)

or only two descriptors, ^T - L;

or only one descriptor , (T)

Similar expressions may he constructed Tor use with the general READ statement.

The permissible values of T and their corresponding meanings are given in [l.1 .

Only a few of the most frequently used T's will be illustrated here.

In EXAMPLE h. the entries in the output table were expressed in standard

floating-point form; i.e., coefficients with corresponding exponents. To

depart from the standard form and obtain numerical values with decimal points

printed instead of exponents, we will specify (using a format word) the parti-

cular transformations desired, the relative location of the decimal-point, the

number of columns to be used for each quantity and the spacing between indivi-

dual quantities. In the standard form we used 12 columns for each quantity and

provided for no spacing between them.

Assume that we want the following format for the table corresponding to

the output of EXAMPLE k.

X Y RHO THETA

+ DDD.DDD + DDD.DDD j- nnnn TYTI J. TYTiry TYTYTl

it it II II

if ii 1» II

it ii II II

where the D's represent decimal digits. That is, we will specify a total of

8 characters for each quantity and k blank spaces between each quantity. Note

that in the total length, 8, we include the algebraic sign and decimal point

in the count. (We chose four spaces between quantities since the column head-

ings, X, Y, RHO and THETA were approximately centered over 12 column entries;

^5

hence, with the choice of 8 characters for each quantity and k spaces betweer

quantities, we will not have to alter the spacing of" the characters of the

column headings).

To specify this format we construct a format word which we arbitrarily

label SEE1.

(~l AAinfmiimn LOG U.T. rUKMUlAü, STATEMCJUXO, COMMENTS
L 6 7 10 11 77-80

SEE1. FORM (3-2)l2-3-8)3-^)l2-3-3)3-^)l2-^-8)3-U)l2-3-8)2 7-1

Note that the arbitrary name chosen for the format word is written in the

L/UUä'1'J-uiN columns a.na uie wuru runi-i JLH tuimmiö f-iu oi x.ne cycling sneet. me

parenthesized expressions are written in columns 11-76.

The PRINT Statement that refers to this format word is written in the

following form:

PRINT-FORMAT(SEE1.) - (x)Y)RH0)T $ 7'

The expressions (3-L) in the format word, SEEl., correspond to T = 3 which

denotes that a spacing of L columns is desired. (Note that we begin with 2

spaces before the first quantity, X, and denoted spacings of h thereafter).

The expression (12-3-8) corresponds to T = 12

S = 3
T Q U = U

and represents the form for the quantity, X.

T = 12 denotes that the quantity exists internally as a floating-point

number and the output form desired is a "fixed" form with the
j j r» "fixed" decimal-point location speciriea Dy xne correspunuing D

S = 3 denotes that the "fixed" decimal-point is to be recorded after

the 3 digits that follow the algebraic sign.

L = 8 denotes that a total of 8 columns (or characters) are to be used

for the quantity.

U6

Note the identical forms for the quantities X, Y, and THETA and the decimal-

point after h digits in the representation for RHO. The 2 after the last

parenthesized expression corresponds to T = 2 and denotes the end of the

format word.

To obtain the desired results, we -will replace Card 7 of EXAMPLE h. with

the card identified as 7; above, (i.e., the PRINT Statement that refers to the

specified format), and add the card identified as 7-1 that defines the speci-

fied format. The program, input and output are listed in FIGURE 15.

4Y

-p-
00

23 JULY,63 PAGE 1
PROB C906 M- J.R0MAN6LLI 45107 EXAMPLE 5 I

COMM TRANSFORMATION OF RECTANGULAR TO POLAR COORDINATES 2

START PRINK * Y RHO THETA> 3

REAÜPT READ(X)Y* RH0=SQRT(X*X+Y»Y) 4

ENTER«ARTAN)Y)X)TH 5

TH=57.295780«TH 6

PRINT-F0KMA1(SEE1.)-(X)Y)RHO)TH)% GOTO{READPT)% 7«

SEE1. FORM 13-2)12-3-8)3-4)12-3-8)3-4)12-4-8)3-4)12-3-8)2 7.1

END GOTO(START) 8

I0000000 01 10000000 01

30000000 02 40000000 02

-80000000 01 60000000 01

75000000 00-50000000-01

-40000000 01-50000000-01

MAY.23,63 BRLESC FORAST F62

0000001

PKOB C906 M.J.ROM/ iNELLI 4510 7 EXAMPLE 5

X Y RHO THETA

I.,000 1.000 1.41 45.000

30.000 40.000 50.00 53.130

8.000 6.000 10 . 00 14 3.130

. 750 - .050 .75 - 3.814

4.000 - .050 4.00 -179.284

FIGURE 15,

In addition to accepting FORMULA statements which involve addition,

subtraction, multiplication, division, exponentiation and many single-valued

functions of one-argument, FORAST also accepts eleven English word statements

If «~-~~

Thp 1 attpr a1"^ called ' nspnfln nr-dpT-.

types" and are labelled "Vtiutzti TifiH" over columns (xnrough IU or xne sxanaara

coding form. Only 11 of the 22 permissible order types will be illustrated in

this report. Included in the eleven English word statements is the general
I.IMIMI.lt) _J 1 U ,J„-;„-U ,-*,--J.3~~ -P„« „„„ 1 ,,„ 4- -? ~~ ~ ~-P r-.-~~-«~V4I •r-. 4-^1 -,,- -P^-«4--.r ^M«/I+ n o« n CdMJ-.Cir\ b ua,ut:illt:iiu WI1XUI1 pi'UViueb lui cvaxuaoiuiib ui O,JJJJJ. uAjainucx^ J. ui o v laiu-nuiio

of more than one argument.

We have in the previous examples illustrated special cases from each of

the above categories. Each example included at least one English word state-

ment and at least one single-valued function of one argument. The READ, PRINT,

nf\ms~> J3 I.IMIMLIL) „4-„ 4 1 jll.^i «„ 4-^,3]i ~4> 4-U --. "II T?v* r*~\ A r-T~ t rs-.-**A r*4-n 4-^Tn^>>n4- ,-, ijuiu a,nu riiMX£i[\ buauemeiiub uiubuareu t ui one J-J. uugxioii HUXW. O W ocmen oo •

PROB and END, (which are required in every problem), illustrated two of the

special O.T. English words. Listed below are the 11 English word statements

CLIIU. UllCr _L_L UiUCl "OV^CO U"^> l_"3 J—I—Luouiu^u. J.U ULIXU I^|/VI ^»

ENGLISH WORD STATEMENTS

GOTO

SET

SETEA

INC
n/-»T TUTTTl

IF

CLEAR

MOVE

ENTER

READ, PRINT (PUNCH)

HALT

SPECIAL ENGLISH WORDS (O.T.)

PROB (Problem

SjViU

DATE

COMM (Comment)

nrVKTTTl rn~~4-i ,i
^ OUUl/lIIUC i

FORM (Format)

LIST (Listing)

BLOC

SYN (Synonym)

DEC (Decimal)

DEC = (Decimal Eaualitv^

In general, the English word statements may appear anywhere in a program

and are transformed to computer instructions that will be executed during the

h3

running of the program. The special English words are not transformed into

computer instructions, the words themselves may only appear in columns 7

through 10. (Note that none of these names exceeds four characters). Rather

than describe each of the above in their full generality, we will continue

as in the previous examples to introduce a few in each example, with vari-

ations illustrated in succeeding examples.

Many problems require definitions of functions, or more generally, many

problems require control of processes which are based on conditional relation-

ships. For example, it may be necessary to evaluate

fl'Y^ _ A -u T5Y a. HY'

f(X) = D + EX

Y ^ 1 C
^ ~N. -L • J

if X > 1.5

We assume that X ma^r tak*3 on values in either ran^e ^ut ac c"t"a^"°d Q^^^O

f(X; is defined accordingly. Schematically, the above may be illustrated as

follows:

X > 1.5

fYes

DEF2

No

f(X) = D + EX

WORK

^ f(X) = A + BX + CXC

We have arbitrarily labelled one of the definitions DEF2 and indicated that

after the aTinrcnriate definition is annüed (i = e= - after the aTvnroTiriste

function is evaluated; the computer is to continue operations at a place called

WORK. To instruct the computer in the FORAST language to carry out the above

sn

plan, we write:

LOC. O.T. FORMULAS, STATEMENTS, COMMENTS

IF(X > 1.5)GOTO(DEF2)# FX = A + X(B + C * x)$ GOTO(WORK)

DEF2 FX = D + E * X

WORK

The above is an illustration of a simple conditional statement. It has the —

form

IF (a specified condition is satisfied) GOTO(someplace)$

As indicated in the form, if the specified condition is satisfied the computer

is directed to GOTO the someplace denoted for subsequent instructions, other-

wise the computer will execute the statement immediately following the con-

ditional statement. It is to be emphasized that the above is an illustration

of a simple conditional statement, more general compound forms are permissible.

The conditional expressions may contain < , > , and equality relations whose

terms involve the arithmetic operations and single-valued functions of one

argument. Indeed a single conditional statement may contain many conditional

expressions separated by the logical operations AND or OR and each expression

may be prefixed with ABS, NOT, INT, etc., where: ABS denotes absolute value;

NOT denotes negation of the parenthesized relation, INT denotes that the

quantities involved in the relation are integers in integer form, ^not floating-

point form). In the following example, we will illustrate the simple form of

a conditional statement.

>•!•

EXAMPLE 6.

GIVEN: A, B and N recorded in standard floating-point form in the

first three fields of a punched card; (Assume several such

cards.)

f(X) = sin X ; H = B - A .
N

REQUIRED: Use the trapezoidal rule to obtain an approximation f^r thc

definite integral

T = I fCxW • \-, —
JA

T'r'Pt TIP» ^nirlfll rnl/a«

\ f(X)dx = I
•'A

I = H
f(A) + f(A+H) + f(A+2H) + ••• + f(B-H) + ^|^

'd
2

Print and identify: A; B; N and I .

Note that the trapezoidal rule requires that the function

(integrand) be evaluated at (N+l) discrete values of X,

U11C tllU VC1J.UCÖ \.T-1 CLll*JL ±J j O.J. ^ WCXgllUCU _L / C_ j WIC llltCl ± Ul

values have unit weight.

To construct a flow chart that outlines a plan to obtain the desired

solution we begin bv denoting that we want the computer to read the card that

contains the pertinent values A, B and N. Recall that once they have been

read, they are recorded internally for as many future references as desired.

52

Hence to indicate that we want to begin by having the computer read a card,

we write

•RT?ftT1\T

A,B,N

Next, we observe by studying the definition of the trapezoidal rule that we

need the value H for two purposes:

1.) it is needed as a factor to obtain the final result after the

weighted integrand values are summed;

2.) it is needed to construct the discrete interior values of X, I.e.,

A + H, A + 2H, A + 5R, etc.

Hence, since we need H for the two purposes given above ve append to the chart

a box indicating the desired definition and evaluation of H.

BEGIN

x^ READ:

A '-R 1\T

H = = B - A
N s •^

Next, noting that the definition requires weights of l/2 on the "end" terms,

we can dispose of these by instructing the computer to evaluate the following

function

I = l/2(sin A + sin B)

We indicate this on the chart accordingly

T>Tn/TTT\T
.DIUJXIY

N READ:

A_,B,N

H : = B - A
N

I = = l/2(f(A) + f(B)) -J x*l

00

HOW note "that "the remaining required arguments, A + H, A + 2H, etc., can he

obtained in general by adding H to the previous argument. If we let X

be an existing argument, the next argument can be obtained by adding H to X.

Symbolically we can write this as

where it is understood that the X on the right of the equality represents

an existing value which will be used to generate a "new" existing value.

Hence we have generalized, in that anytime we want the computer to generate

a new argument, we need only direct it to the generalized expression. Note

also that each of these arguments will undergo "similar treatment", i.e.,

each is the argument for the function, sine. Hence we can generalize a two

step process and write it in the form

X = X + H y>
--../_.\ 1 = 1+ sirnxj

If ve let X take on the initial value of A and direct the computer to

the above two step process, it i,the computer; would in the first step evaluate

the function for existing values of X and H which result in a value of

X = A + H. In the next step, the computer would add the sin(A + H) to the

existing value of I. Hence, after the first execution of the two step process,

I would then represent the sum of three terms of the bracket j" | , namely the

first, second and last terms. To schematically illustrate the above, we augment

BEGIN

READ:

A,B,N

H B - A
N I = l/2(f(A) + f(B))U->| X = A

X = X + H

I = I + sin X

r-l,

WC IlcLVC ctiux l*±~cxi:±s.y lauciicu one £>GII,C:.L"CLJ_-L^JCU. u.cx J_IIJ- U-L^JII \J± ai guuicuuD a-nu. one

summing of the general term, NXTERM. We "will want to make reference to this

process and direct the machine to carry it out as many times as required.

A+ +Vi -i a -r\r\-i n+ uo non Q-nril ir o cinrnlp fnnHif.innfll R-hfl+".p»m£*ri~h _

If one refers to the definition of the Trapezoidal Rule, it will he

noted that the "last term" we want the computer to add to the existing I is

f(B - R"), i.e., sin (B - R"), (since we have already accounted for the term

). Hence we need only instruct the computer to determine, after adding

a term to the existing I, whether the corresponding argument was equal to

B - H. If indeed X = B - H, all of the required terms have heen evaluated

and summed; otherwise, we can instruct the computer to "go back" to evaluate

and add the next term oo one existing ±. ocnemaoicaxj-y oais conui oion can ue

illustrated as follows:

L
NXTERM JT

X = X + H

I = I + sin X

X = B - H ?

•v^

No

The corresponding conditional statement in the FORAST language would be written

as

IF(X = B - H)GOT0(FINISH)# GOTO(NXTmM)

however, since the computers use a finite number of places in the calculations

the conditional statement written above mav not be adequate for all values of

55

A- B 6,nd. N* To illiis'tr&'ts "this, suppose;

A = 0

B = 1

N = 3

thpn . H = 1 /^ and thp> pnin'va 1 pnt. i ntprnal rpnreaen+atlnn = ^^« • • "z. •

similarly, B - H = 2/3 and the equivalent internal representation = .666-•-J

(The internal representations result from conventional rounding and truncation

nrocedures"). The X argument, "corresnondine" to B - H. eensratsd bv the KTIPPI - x-_--_ f ^ _ y - J- <_J -_ J u — ^ _ J. _

X»J_J J_-C»J ; -1- .r -1.3 T rt • TT • TT /I /I/I - . £ t T.T _ J J_l__ If/'T IT j ._ _l_l_ _ 1 _ _ _ _L neu QeiiaiLiun WULLLU ue w T n -r n = .uou" "o ; uuue \-ne o in i,ne least

significant digit. Hence this value is not equal to the .666--'7> i.e.,

.666'• *6 / .666*•'7- In conditional expressions, equality relations are not
CQ + TC-PT^^ l 1 »-1 "1 ö c c* +V^i=i >«aciil +-i n/T mimQ>»T AQ 1 ira lnoc An Vi r\ + Vi (~> -i A ar* r-\-f* + V\^i annfil n fir
Cia U _L O-i- -Lt^^ UIU.COC WIC ICOLLLUlllg 11U111C1 Xl^Cti VO.J.U4CO UU UWU11 d-L»_*.^0 W J. Uli^ C^UQ^a^J

have identical representations. Hence, we should relax the stringent equality-

condition and ask if X differs from B - H by a "tolerable" amount, say e, i.e.,

|A - \D-nj | < e

I t

If we choose e = -^^'- , we will provide for a maximum tolerable error. We

express this conditional statement in the following form:

IF-ABS(X-(B-H) < H/2)G0T0(FINISH)$ G0T0(NXTERM)#

When ABS precedes a conditional expression^ the computers first evaluate both

sides of the conditional expression, then take the absolute values of both

sides before checking to see if the relation is satisfied. In essence, the

above statement corresponds mathematically to

A -P I V T> iTT I ^
J-J. | A.-Ü-TH | V.

|H| __ .. ,.
~2~ gu to unisn, oxnerwise go to tne computation of

the next term. At the location caller! •PTNTSW uo T.ran+ +v,Q n••i+D^ +^ -„H^I,.

one «Äiübirig va±ue 01 i oy a zo complete tne definition of the trapezoidal rule.

The complete flow-chart is shown in FIGURE l6.

56

*| I =i(f(A) + f(B))

NXTERM

X = X + H

I=T + sinM

FINISH

PRINT & IDENTIFY" kr I = HI te-

les

FLOW CHART FOR EXAMPLE 6, (TRAPEZOIDAL RULE),

FIGURE 16.

The program, input and output for EXAMPLE 6 are listed in FIGURE 17.

57

2 3 JULY , 63 PAGIr
PROB C906 M.J. ROMANELLI 45107 EXAMPLE 6.

BEGIN RtAü(A)B)N2 H= (B-A)/fU I=.5(SIN(A)+SIN{B)M X = A

NXTERM X=X+FU I = H-SIN(X)S I F-ABS (X-B + FKH/2) GOTO (F I N I SH) t GOTO (NXTEKM)

FINISH I^H»n; PRINir<A = >A< B = >B< N = >N< I = >i% GGTu(BEGINI)

END GOTOIOE&IN)

OOOOOOUO 00 lb/07930 01 25000000 OZ

OOOOOOOO 00 15707930 0 1 50000000 02

00000000 00 15707930 01 10000000 03

OOOOOOOO 00 15707930 01 20000000 03

OOOOOOOO 00 15707930 OIL 30000000 03

OOOOOOOO 00 15707930 01 40000000 03

OOOOOOOO 00 15707930 01 50000000 03

I
1

2

3

4

5

Co

A = OOOOOOOO

A = OOOOOOOO

A = OOOOOOOO

A = OOOOOOOO

A = OOOOOOOO

A = OOOOOOOO

A = OOOOOOOO

.J. ROMAiMELLI 45101 r EXAMPLE 6.

a - 15 7079 30] L N = 2 5000000 2 = 99966767

8 = 15707930 1 L N = 50000000 2] [= 99991443

B = 15707930] L N = 10000000 3 [= 99997611

B = 15707930 L N = 20000000 3 t = 99999153

B = 15 707930] L N = 30000000 3 [= 99999439

B = 15707930 1 L N = 40000000 3 I = 99999539

B = 15707930] L N = 50000000 3 := 99999585

0000001

0000002

0000003

0000004

0000005

0000006

0000007

FIGURE 17'.

i /-\Y^ i—i"t J.U _LU.C:II O-L J. jf one wu. opuo ^uaiiui o.L.e o ^ we na. v c

general PRINT statement. The statement

• i • IT I J_ _ TiT\TTim /nTTlT/tTT \ J_1-_ _ _f» J_1_ _ L -• J 1-?J insxrucxs xne computer 1:0 rnjjyx^ruiNun; Lne name ox me q.uanc<iuy, an eq.ua±j. uy

symbol, followed by the corresponding numerical value of the quantity. (The

lower case b's merely serve to indicate blanks and are used to obtain con-

venient spacing between symbols, numerical values, etc.y. uince all characters

specified between < and > in PRINT statements are printed, the above state-

ment provides for output in the form

A = B = N = I = .

UUüCI VC J.I1 J.' _H_JU1\U _L I Ulla, u unc llUiliCl J.v-aj. va-1-U.^o a,x t; i cpicctiiov;\x _1.11 u ijunuui u

floating-point form since we did not specify any format to depart from the

standard representation.

59

To illustrate a concept that is applicable in many problems we will write

another program to obtain a solution to the problem of EXAMPLE o. The concept

to be illustrated is one in which we will "vary" the "exit" of a general

function evaluation so that we will direct the computer to various destinations

-; v, ^~.A~~. +.-N ,,.-.•; •i—\- (^~, A v, „,-..~,-.~,n l ,,+ •! i -; r,^ '\ + v,<-* ^.,,r, n ,,^, + „,q .p,,„„+,• ,^„ ^„ „,-, „ ,^.„ ,q „ „,-..-, xxi uiuci ou wci^uij Vul -Lli ^ciici ai UOI±ILC/ unc cvaiuaocu lunuoiun j_n aui;ui uanuc

with given definitions. Recall that the definition of the trapezoidal rule

I = H
f-m

+ f(A+H) + f(A+2H) +
WT^

requires the end terms be weighted by l/2, and the interior terms require

weights of unity. In EXAMPLE 6, we disposed of the end terms by treating them

separately; i.e., we explicitly defined them and constructed general definitions

for the arguments and functional values corresponding to the interior terms.

In this example we will include all arguments and terms in general definitions.

Although the generalizations are relatively simple for this example, the con-

cept is most advantageous when general definitions are complicated and mere

yc-nc.4- T +-i Ann Q T».^ "1 Q V.A-r*-i AH C JL, ^ LJC <^_|_ UXU11Q <^*.J- ^ J.aUUA xuuo •

Consider the following generalization:

EVEN

f(X) =
r ÜU TU

V kj wilier p-Lci u c - \

It is assumed that prior to entering EVFN, ^evaluate function;, X has taken

on a prescribed value. The function is then evaluated and recorded as per

definition and the computer then goes to "someplace" for subsequent instruct-

lg, OL1^3 -". -L ^

required, we can specify the "someplace" for subsequent instructions! That

is, we can let "someplace" take on a specific name prior to entering EVEN.

£n

nor example, suppose;

First: Let X = A

Let "someplace" = Place 1

Go to evaluate function

This is appended to the above generalization and illustrated schematically

EVFN

A = A
C 1 ^ ~ -. _ T> "I ~ ~ ~ T
OUiIltijJJ.ctuti = jr.Lci.iJt; -L

/ GO TO
-^\ "Someplace" j

When the computer "arrives" at Place 1, (since someplace has existing value

Place l)) f^X^ has been evaluated for X = A and hence is available for what-

ever treatment is desired. Suppose then at

PLACE 1

where at

NEXTX

Form I = f(X)/2

Let "Someplace" = Place 2

(\r\ +- r\ rronoTato nov+ V

Form X = X + H

Go to evaluate function

The flow-chart is augmented to reflect the above as follows:

FIRST EVFN

X = A

Someplace = Place 1

•f(X) = ... f / \ '

PIACE 1

I = f(X)2

Someplace = Place 2
J

UTTTTVmV I

X - X + H

V.

GO TO
Someplace o

(<\

Py-T r~\y + r\ Q TTQ "liiq-f-iT-irr i"Vip "f i] T! f» + "i An fny V — Y -4- II onmonl a r*cs "hoc? ovi cfirifT VQI HQ
U.v^

Place 2, hence at Place 2, f(X) corresponding to f(X+H) is available for sub-

sequent treatment. Now, at Place 2, "subsequent" treatment depends on whether

f(X) has just been evaluated for X = B- (for if it has we want to applv weight

1/2, otherwise weight unity', j. Hence at

ITTI
PLACE 2. If JX - Bj < ^- go to finish ;

otherwise, form 1=1+ f(X)

Go to next X .

(Note that "someplace" retains the undisturbed existing value, (Place 2).

When the computer arrives at finish, the existing vaxue OJ. J. represents one

sum of the first N terms. Now we need only add 1/2 of the existing f(Xj = f(B)

to I and multiply by H to obtain the desired solution. Hence at

FINISH; I = H (I + f(X)/2)

Print etc.

The complete flow-chart which includes the above is shown in FIGURE l8, the

UUI LCupUiiUlllg plkJ^±CLlii ClilU. 1CÖLLLOC dj. <3 öliUWil 111 -L' J. VJ KJ1VLJ J. J •

62

NEXTX

PLACE!

[= f(X)/2

SMPL = Place 2

1
1

READ:

H = (B-A)/N

X = A

/ GO TO \

 1 "RMPT,"]

1=1+ f(X)

r«liMT & IDttJNXlFf

A,B,N,I

PLACE 2.i FINISH

. No
Iwl

|X-B| < J|L ? Yes I = H(l+f(X)/2

FLOW CHART FOR EXAMPLE 7.

T7t-r(-iTn-»TTl -i O

Op

HH (M fft »t 1ft Jl K ff)

JJ
•J

-H f\J ro -••• ir\ *n K.

o o b 3 O O o

o o o O o O o
o 3 o o c C c
c c a o o o o

re
-0

h- m —1 en <T o- LCI
vO •tf .—1 n re m CO
r- •J- o —^ •tf in Lf\
-o -j r- CT* CT- ^ T
^0 9- <T rr> CT- o O1-
7» 0> T cr 0" 7* ?>
O cr a- a^ t> a- CJ*
a- C^ a- o* CT- a C>

O
—* UJ
X QO II II II II II II 11
t— —.
X o

—~ -U >—
—* ^ o
LU ^-< L3 ^J ••\J ro TT* r^ m -r*
I s r^ ki

< >— 9«
1 i—\

•—s UJ

It
J /N _l 3 3 3 3 3 3 3

r» —I
X

II 2:
<

3
3

3
3 3

3
3

3
3

3
3

3
3

ÜJ 5: a. k—« X 3 3 3 3 3 3 3
i 00 ^ LU j-i (> 0 O C O c
a. — •—4 •N LT1 —' M rO v}- in _.

y— M V
< LU *—4 e
X S) A II II II II II II 11
LÜ

M
6*

II 3 Z 2 Z 2 2 2 -v

r>- < — X !M <M rA ro ro ro ro —*
c II <N t/1 2» O 3 3 3 3 3 3 m
—4 •x UJ •—• >3"
in o c^ O 3 3 3 3 3 3
•T 9« •-• < •—« V o 3 O 3 3 3 3

2 -J _J LU 3D o 3 a 3 3 3 3 >—• 3 3 O 3 3 3 3
>». o_ OL w A o o 3 3 3 3 3 (Nl _i !•< re rci rr- ro m r<~,

t-^ — s: II O o 3 3 3 3 3 3 •O -J O O- O (T 0"< o> rr-
_j «a W! _j u- II Q o o Q Q Q Q ii. LU r*^ r*^ r^ K. h. h- f^
_l r » Q. -~ O iTl a 3 3 3 3 3 ^ 3 3 C 3 3 3 3
'jj CD — ?T :r ,_3 CD rvj n ai I>J rf\ ^j- _r> i— *3 r^ f^- r^ r^- r^- r*- N».

2 — o uO LL — ^ £ m T\ ^ -O vO m L->
<j i; h- — ^ fvj _« _4 —< r^ —< —i —ä ** f*^ —4 —i ^-! -H —4 .-^ -M

5T i O ^~ LU >s. V o 3 3 3 3 3 3 5 5
O ' ^ JJ w X «f «C 3
OC »«? i/> o V — A —• o 3 3 3 3 3 3 LL # 11 II II II II 11 II

* 2r <rr r— CD fSj ^ n i (1 1 (O r»i r»i n i pi 3
-5 —» ~— •«? o 1 V. II t—4 0* c* a^ (T C7- O 0* • 0 CD X3 CC CD cc X

• UJ X f\i o X X o r^- r** r~ r- r- r- r- 3 *£.
s: — — ->. — a. < -U O 3 3 3 3 3 3 ./}

< ^ X J* <~n + V CQ S- r>- r~ r- r- r- r^- LU
-o «-* *-« LL I co —* \— •»• r\ i.r> n in r\ rv T\ -J -c
3 Q •^1 •V < — ^ o at CD
cr <r II X I X ««- K- 33 J> 3 3 3 3 3 3 3
u LU X H II LL. ii X. 3 O 3 3 3 3 3 3 O 3 3 3 3 3 3 3

JT a. — X »—* —•* -L 'J o O 3 3 3 3 3 3 3 3 3 3 3 3
a >n CO 3 3 3 3 3 3 3
o Q 3 3 3 3 3 3 3 <3 3 3 3 3 3 3 3 3
:£ 3 3 3 3 3 3 3 3 * ac 3 3 3 3 3 3 3
a. UJ 3 3 3 3 3 3 3 r»^ Q. 3 3 3 3 3 3 3

~* !\J X 3 3 3 3 3 3 3 IN 3 3 3 3 3 3 3
3 UJ X LU oO 3 O 3 3 O 3 3 •
^H 2 '_) <r— J i—i 3 3 3 3 3 3 3 >-
o LL < x < rr Q Q Q Q Q o o <; !| 11 |! 11 1! II N

UJ > _l 'JU -J i—i 3 3 3 3 3 3 3 ^
re 11 I n -^ o 11

w
e
o
I J

^1.

We have in our previous examples made direct references by identifying

quantities by names, i.e., we constructed symbolic names of variables, functions,

statements, etc. It is important to distinguish between "names" of quantities

and the quantities themselves. If for example,

Y = "1 *
" — _i- • y

Y = 72

Z = X + Y

Z- X and Y are names- whereas 73*3- 1=3 and 72 are the Quantities or one mav

say that 73- 3> 1-3 • and 72 are the numerical values of Z, X, and Y.

In arithmetic expressions and formulas such as the above it is understood

that the operations are to be performed on the numerical values and not their

names. As we shall illustrate shortly, in some statements it is the name and

not the numerical value that is inferred. A trivial example is the statement,

nnmr^f Tmr*-rTj\ T~ —~~-~.~i ~~~ ~ s ~~x ^ ,-, ~ ~~.?.-,-t-~ ^ ~-,-.v«~-«-? y^ n Tmi,irt ,r?+^ 4-u^. \j\j± \j \ uni\j±vi) . j_ii gciici ax ^ unc nccu IWJ\J aübULiauc CL IIUJUCI iua± vaiuc wiwi one

name BEGIN, (we shall leave such interpretations to the professional pro-

grammer!) .

In this example we introduce the SET statement which illustrates a case

where the name and not the value is inferred. SET statements are generally of

SET(A = B)

where:

A is generally the symbolic name of an index;

B is either a symbolic name or an explicit integer.

If B is a symbolic name, then A takes on a value that is the name B_,

\H^JKJ uiic vcx_i_ixc: wx XJ) •

If B is an explicit integer, then A takes on the value that is the

explicit integer.

65

Hence, the value that A takes on depends on whether B is a symbolic

name or whether B is an explicit integer.

EXAMPLES:

SET(A = SAM) , then the existing value of A is SAM.

OTPm/'A _)l ^ 4-"U„^ 4-"U~ nvl„±A-r*r* ,mlnn ^>-P A Ar.)l

Recall that in the previous discussion of general names, a name that contains

tue special cnaracoer cOiumB is an inuexeu. name anu. iiiucXcu names u.epen*x on

the existing "value" of the index. For example, XI,I is an indexed name.

We call XI the base name and I an index name.

XI x IICLID CAibonig vaxuc ^, oncii ^x , x x cpi wocu oo unt uumv '*• v-

Similarly, the name ,J is an indexed name.

If J has existing value PETE, then ,J represents the name PETE or we may say

Hence, indices may take on two types of values:

a.) the value of an index may be a name * ;

b.) the value of an index may be an integer.

(in EXAMPLE 8 we will illustrate an example where the value of an index is an

integer).

In the generalization

EVFN

f(X) =
/ GO TO \

->l "Someplace")

to let "someplace" = Place 1 prior to entering the evaluation of the function

* In general, an index can only take on integer values since all names are
automatically transformed to unique integers during the transformation from
the FORAST language to the primitive machine language.

66

tr A wixn A = A, we wrixe

SET(SMPL = PLACE l).

Then following the definition of f(X) we write

GOTO(,SMPL)

Hence, after evaluation of f(A). the existing value of

SMPL is PLACE 1

consequently tue computer goes to run^n ± for subsequent instructions. Simi-

larly at PLACE 1, we defined

I = f(X)/2 and followed this definition with

SET(SMPL = PLACE 2)

ouexci/y cüi/auiibiiing one CAj.00j.ng vamc u± omrjj a.0 rjjcioj^ c. luruugiiuui/ one

remainder of the computation, for the existing A, B and N, SMPL retains its

value of PLACE 2 so that all exits from the evaluation of the function are

67

EXAMPLE 8.

This example illustrates a convenient use of an index which takes on

prescribed integer values. We will also introduce a COUNT statement, a

BLOC statement, another form of the general READ statement and a GOTO(next

problem) statement.

GIVEN:

REQUIRED:

X. recorded on cards in standard form, six per card, i = 1,2, ,100

100

i = 1

J. .L J.11 U •

START PARSUM

READ:

X.
l

i = 1,2,...,100

i = 0 S. . =
A -4-1 S. + X..n -l -i 4- 1

s s
S = 0 o

/ \ '

1
1
1
4r

i = i + 1

V '
Yes 1 AA O

No

(GO T0^ PRINT:

S - - --- V N. PROB/"

FLOW CHART FOR EXAMPLE

FIGURE 20.

60

On the flow chart of FIGURE 20, we have indicated that we want the

computer to STAET by reading and recording the 100 numerical values correspond-

ing to the given X.. We assume that they are recorded on cards in standard

form, o numerical values per card. To instruct the computer to do this we

write

READ(100)NOS.AT(XI)#

number of values that are to be read and recorded. ^Actually, one may write

the explicit integer as above, or the name of an existing integer). The

name enclosed in •narentheses immediately after AT specifies where thev are

to be recorded internally.

To insure that there will be no conflict in identif'"'in0' the 100 X1 s - we

reserve internal space by writing a BLOC statement

BLOC(XI - XI00)$

The BLOC statement not only reserves 100 consecutive spaces for the X's, it

(This may seem trivial, however, it is necessary since names such as XA, X',

X., etc. are also permissible names'.). Since BLOC is an order type (O.T.)

word it mav oniv appear in columns J-±0- the bloc definitions themselves are

recorded commencing in column 11. Also, since BLOC is an order type (O.T.)

word, it is not transformed into machine instructions, hence it is generally

placed after the PROB card and before the START card.

To obtain the sum of the X's we could write a statement

D = A.L + Kd. + A^ + etc . ,

however; i may be large (several thousand) and consequently we generalize so

that we do not have to write and identify each and every term. We will genera-

lize by computing "partial sums", generally denoted by S.. We first SET(l=0)

and define the corresponding partial sum, S =0. The general partial sum is

69

ueiineu in oemis ui i-rie previuUss puroiax sum; i.e.,

S. . = S. +-x. .
l+l l l+l

When our ultimate coal is to obtain the final sum- we need not even distinguish

between the (i+l)st and the ith partial sum, hence we may write

s = s + x.+1

because the existing value of S is used on the risht of the er,ualit-v before

the resulting value is assigned to the name on the left of the equality. We

have arbitrarily labelled the general partial sum definition, PARSUM. The

program, corresuondine to the uortion of the flow chart which has been dis-

PROB C906 M.J. ROMANELLI U5IO7 EXAMPLE 8 .

•RT.nr- (YI _ vinnl

START READ(100)N0S.AT(X1)# SET(l=o)$ S = 0

PARSUM S = S + XI,I

When the computer encounters the PARSUM statement for the first time, the

existing value of S is zero anu ± = w, nence a± oer executing one 1 mmun SuSi^e —

ment for the first time, the computer obtains

S = 0 + XI = XI .

Since we have generalized, we could obtain our desired solution if we could

instruct the computer to execute the PARSUM statement exactly 100 times, cor-

responding to I = 0,1,2, ...,99. The general COUNT statement was designed

specifically for such situations'. The COUNT statement is generally written in

70

COUNT (A) IN (B) GOTO (C) £

where:

A is the name of an explicit integer or name of an integer;

B is the name of an integer;

C is the name of a place.

V-iTRt.. the index, whose name arroears in the parenthesis after IN, 'is auto-

matically increased by unity.

Next, the existing value of the B index is compared with the integer indicated

in parenthesis after COUNT, i^or with the existing value of the index whose name

appears in parenthesis after COUNT), i.e. the existing value of B is compared

with the existing value of A.

Finally, if the existing value of B is less than the existing value of A, then

the computer goes to C for subsequent instructions: otherwise, i.e., if the

existing value of B is > or = the existing value of A, the computer goes to

the next statement, i.e., the statement immediately following this COUNT state-

ment.

Again, to generalize, if the initial existing value of B is the integer b and

the existing value of A is the integer a, then the instructions at C will be

executeu. exactly

(a - b) times .

For our example, we write

COUNT(IOO)IN(I)GOTO(PARSUM) <f>

Since, we initially set I = 0 so that XI,I initially represents the first X,

we have a = 100 and b = 0, hence the PARSUM statement will be executed

(lOO-O) times. Of equal importance is the fact that the index i will auto-

matically take on the desired values 1,2,5^===^100= We have emphasized the

71

fact on the flow chart bv writing i = i + 1 in the box just prior to the

determination as to whether i <100 ? Note also that even though i will

take on the value 100, the PARSUM statement will not be executed corresponding

to i = 100. since as indicated, i is advanced by unity immediately after the

execution o± one jr-nxvaura statement anu just prior to the determination of

i < 100 ? Hence, the single COUNT statement corresponds to the two boxes of

the flow chart indicated below:

i = i + I

\f

f Yes s* n r\r\ o "*" *•* **

r
Hence, immediately after the PARSUM statement, we write the COUNT statement.

The COUNT statement is followed by the PRINT statement and then the "new"

statement

GOTO(N.PROB)

is written. We use this latter statement to signal to the computer the end

of the execution of our problem, and it directs the computer to the reading of

the next "nroblem residing in the input device =

The program, input and output corresponding to EXAMPLE 8 is listed in FIGURE 21.

7?

23 JULY,63 PAGE 1
PROB C906 M.J. ROMANELLI 45107 EXAMPLE 8 1

BLOC(Xl-X100) 2

START READt100)NOS.AT(XI)X S=0« SET(J=0) 3

PARSUM S=S+X1,I 4

COUNT(100)IN(I)GOTO(PARSUM) 5

PRINKS = >S% GOTO(N.PROB) 6

END GOTO(START) 7

10000000 01 20000000 01 30000000 01 40000000 01 50000000 01 60000000 01

70000000 01 80000000 01 90000000 01 10000000 02 11000000 02 12000000 02

13000000 02 14000000 02 15000000 02 16000000 02 17000000 02 18000000 02

19000000 02 20000000 02 21000000 02 22000000 02 23000000 02 24000000 02

25000000 02 26000000 02 27000000 02 28000000 02 29000000 02 30000000 02

31000000 02 32000000 02 33000000 02 34000000 02 35000000 02 36000000 02

3 7000000 02 38000000 02 39000000 02 40000000 02 41000000 02 42000000 02

^ 43000000 02 44000000 02 45000000 02 46000000 02 47000000 02 48000000 02

49000000 02 50000000 02 51000000 02 52000000 02 53000000 02 54000000 02

55000000 02 56000000 02 57000000 02 58000000 02 59000000 02 60000000 02

61000000 02 62000000 02 63000000 02 64000000 02 65000000 02 66000000 02

67000000 02 68000000 02 69000000 02 70000000 02 71000000 02 72000000 02

73000000 02 74000000 02 75000000 02 76000000 02 77000000 02 78000000 02

79000000 02 80000000 02 81000000 02 82000000 02 83000000 02 84000000 02

85000000 02 86000000 02 87000000 02 88000000 02 89000000 02 90000000 02

91000000 02 92000000 02 93000000 02 94000000 02 95000000 02 96000000 02

97000000 02 98000000 02 99000000 02 10000000 03

MAY.23,63 BRLIESC FORAST F62

PROB C906 M.J. ROMANELLI 45107 EXAMPLE 8 *

S = 50500000 4 FIGURE 21. 0000001

JJiLTU'li ' •• • ~? •

This example illustrates the MOVE and INC (increment) statements,, and

GIVEN: X. and f(X.) recorded on cards in standard form, i = 1,2,3*•••>20.

Assume the X. on four consecutive cards- 6 values on each of the

Assume

the corresponding f(X.) on the next four cards, again 6 values

on each of the first three cards and two values on the last card.

1 ' '

REQUIRED: Obtain a "re-arranged" table of the X_. and corresponding f (X.)

X. < X. n for all i.
l = l+l

PT-I nt, hnt.h t.a"hl PS: i . p . the original and re-arranced tables

with the numerical enxries in stanaara iorm. ±n particular,

print a table in the following form:

ORIGINAL KKAKKAJNUh'JJ

vr T?T

Since we will have to instruct the computer to determine if each X. < X ,

we will first provide for getting the given table of numerical values recorded

internally. This can be accomplished with the following READ statements:

READ(20)N0S.AT(F1)#

7^

— ^» -u l_l_ Alternatively, we can provide ror tne mxernax recoramg ui oo-cn une A. anu.

corresponding f(X.) with the following READ statement:

READ(ll4)N0S.AT(Xl) $>

With this single READ statement, we are instructing the computers to include

in the 4-4 numerical values, the four "extraneous" X., \.i = 21,22,23,24-;, of

the 4-th card. (Recall that only two X., (i = 19,20) are recorded on the Uth

card). In the absence of a format, the computers assume 6 standard values

per card until the READ (or PRINT) statement is fulfilled.

To reserve snace in internal storage for the X. and f(X.) we write the

BLOC statement

BLOC(XI - Xkk)

For future references to the f(X.) we write a SYN statement

Dii^rx = ACJ ;

In SYN statements, the equated names are assigned identical internal names

(identical integers; and hence references to any of the equated names refer

to the same quantity. Again, recall that the BLOC statement not only reserves

space in internal storage, it also establishes X1,X2,X3,...,X4-U as valid names.

'The above SYN statement establishes Fl and X25 as synonomous names. Without

the SYN statement we could refer to the f(X.) in many ways, for example,

yoli T T.T^^VQ T - i o on
ACT , j- mi^i ^ _i_ — _i_,t__, ..*, t-=\^

or XI,J where J = 24-,25,. . . ,43.

However, with the SYN statement we can refer to the f(X.) as

F1,I

thereby retaining the symbolic identification of the given data. Further, if

we refer to the X. as XI,I and if we refer to the f(X.) as F1,I we need only

75

"manipulate" the numerical value for I to make references to X. and the

corresponding f(X.).

Our problem requires that both the original and re-arranged forms of the

"t".fl"hl^ a r»^ "hn Y\e* T»T»1 r\ + f^r\ . ^n Vimro "h^+Vi fnrmc oira-T 1 a~H~l o -i r-i -i n+o-^na 1 c>+ r\-**^ r*^

for printing, we can have the given table recorded in two areas. In one area

we can retain the original form, in another area we can interchange any values

required to obtain the desired re-arranged form* To reserve space for a

second area we can augment the BLOC statement; i.e., we simply add another

parenthesized expression which defines the second area. Let us arbitrarily

denote the second area as (X'l - X'Mi-)- The BLOC statement which reserves

space for both areas is then of the form

BLOC(XI - XM0(X»1 - X«ij4)#

(Alternatively, one could define a BLOC (XI - X88) and an accompanying

SYN (X'l = X^5) to reserve space for both tables and identification of the

acuunu aica ucgxniij-iig, ix u At);,

Now, the single READ statement will provide for the recording of the

g,±vcii uctuie J.11 nit; AI - Att ciieci. j.u uuucij.ii a. uupj ui une given 1/a.uj.t; j.n uiits

X'l - X'4U area, we use the convenient MOVE statement. The MOVE statement is

generally of the form

MOVE(A)NOS.FROM(B)TO(C)#

where:

A is either the name of an integer or an explicit integer which

defines the number of quantities that are to be moved;

B is the name of the first quantity in a source area;

C is the name of the first quantity in a destined area.

The quantities are retained in the source area and hence after the MOVE state-

ment has been executed the quantities exist in both areas.

76

statement it is assumed that the quantities in both areas will be uniformly

spaced,one unit apart. Uniform spacings other than one unit may be specified

for the source and(or) destined area by following the symbolic name with a /

and the integer defining the spacing. For example,

MOVE(N)NOS.FROM(A/3)TO(B/5)#

indicates that the N quantities in the source area are three units apart,

the N quantities in the destined area are to be spaced five units apart.

For our example we write

nITr-iTT-m / I, 1, \i\T*~*n rmAur/vn \mn/vi 1 \flt
jyiUVHi \ M-M- JLHVD . rJMJl'H, A_L) X\J\ -ft. ' -L J-/0

Ordinarily we plan a solution by drawing a flow chart. In this example,

we delayed the drawing of the chart until the capabilities of the new state-

ments were discussed so that the novice obtains some insight as to "how" the

flow chart solution can easily be expressed in the FORAST language. The

comp±ete nuw cna.ru lur c*. buiuoiun ±& given xu xlUUxii d.d.»

77

START

READ:

X. f(X.)
l l

i = 1,2,...,20

X! = X.
l l

f'(X') = f(X,)

i = 1,2,...,20

CD

Yes

X. n < X. „ ?
j+1 - J+2

No

INTERCHANGE:

V " XJ+2

V = t

t = f. n
J+1

f = f
j+1 J+2

f J+2 - t

i =0

TSTFWD CI

x. n <x. ?
i+1- i+2

CJ

Yes.
1=1+1

No

INTERCHANGE:

t = X.
'i+1

X.
1+1 i+2

Xi+2 =t

t = fi+l

fi+l =fi+2

fi+2 =t

Yes

No
0 ? J = i

FLOW CHART FOR EXAMPLE 9

FIGURE 22.

No

i = 19

Yes

PRINT & IDENTIFY

ORIGINAL AND RE-

ARRANGED TABLES

.—•*

N.PROB
)

indicate the recording of the given data in two areas of internal storage,

the primed and unprimed areas. The third box indicates that the index i

is to take on value zero» The next box labelled TSTFWD 'test forward

indicates the monotone test. If the monotone condition is satisfied, the

index i is advanced by one and thence a determination is made as to whether

all of the X's in the table have been tested. If all have been tested, the

existing value of i is 19 and hence we indicate the printing of the tables.

If all X's have not been tested, (i < 19); hence we want the computer to test

If the monotone condition is not satisfied, we want to interchange

A. . -. CX11U. A. ,~; CLllLi. UilC VJUX i. CDjJUll.LI.Xllg X LU1VJ UJLL»11CXX Vd.LU.CD. X11JLD Xll UCI ^llCLllgtr WXX-X

guarantee that this pair now satisfies the monotone condition, but once an

interchange is made, we have no guarantee that the monotone condition prevails

PAVI oil Yf c +Vi£3+ Vira -«i-O vMflQir-i All r?"l" Vio/Mn +^i o + /-i/^ TT^vv-i/-»t> T.Tä W1110+ +AO+ V\d nlrTTri -v+r\ n J- \Jl. O.J—L n. o L-iiCL u nave jjicvi-vjuoxj u^cn u^oucv-u. li^ii«^.^;^ wc; muo^ »--^00 L^a,^xi.vvcix ao

until one pair of X's does satisfy the monotone condition. To perform this

"backward test, note that ve define another index j which initially takes on

+ Via QVI p + iniT iraliiQ r\-P n T\To-v4- T -P T — C\ -r\r\ -Pn YH-V» o v» "KQ ^ln.rar^ +QC + T nrr TO
<_/J.i.^- UAXÜ Ulllg, VUX W.V— >—'X X I Iiv-^U i X.-I- jj — \J 11W X (-*.X Uil'w.l. UU.v_Ii.nW.XVA UV.-fcJUX.J.ifi _i_ »j

necessary, hence we indicate that forward testing is to be resumed. If j

is not zero, the existing value of j is diminished by one and the backward

test continued. Note that an interchange is indicated anv time the monotone

condition is not satisfied. As soon as the condition is satisfied in the

backward testing, the forward testing is resumed.

The program, input and output for this example are listed in FIGURE 2.5.

79

CD
O

23 JULY,63 PAGE 1
PROB C906 M.J. ROMANEILLI 45107 EXAMPLE 9 1

BL0C(X1-X44)X'1-X'44]| 2

SYN (F1=X25) 3

START READ(44)NI0S.AT(X1) 4

M0VE(44)NiOS.FR0M!Xl)T0(X«1) 5

SET(I=0) 6

TSTI-WD IF(XLtK-X2*I)G0T0(CI) 7

T=X1,I?XI,I=X2,I?X2,I=T 8

T = FL,I2 Fl, I = F1,(I+1U F1,(I+1)=T* J = I 9

^J IF-IIMTl J = 0)GCIT0(TSTFWD)* INC(J=J-1) 10

I IF (XI , J< = X2 , J) GO TO (TSTF WD) % 11

T=X1,J* X1,J=X2,JX X2tJ=T 12

T=F1,JS Fl,J=F1,(J+l)g FL.(J+1)=TZ GOTO(CJ) 13

CI C0UNTU9) INU)G0T0fTSTFW0)S 14

PRINK ORIGINAL REARRANGED> 1.5

PRINK XI FI XI FI>% SET (1 = 0) 16

WORK PRlNTCX'ltl)X'25,IJX1,I)F1,I)% COUNT(20)IN(I)GOTOlWORK) 17

GOTO« N. PROB) 1.8

END GOTO (START) 1.9

93000000 00 95000000 00 98000000 00 10000000 01 12000000 01 12500000 01

17000000 01 17500000 01 18000000 01 18500000 01 19000000 01 19300000 01

13000000 01 13500000 01 14000000 01 15000000 01 16000000 01 16500000 01

19800000 01 20000000 01

59783000 00 58168000 00 55702000 00 54030000 00 36236000 00 31532000 00

-12884000 00-17825000 00-22720000 00-27559000 00-32329000 00-35153000 00

26750000 00 21901000 00 16997000 00 70740000-01-29200000-01-79120000-01

-39788000 00-41615000 00

MAY.23,63 BRLESC FORAST F62

PROB C906 M.J. ROMANELLI 45107 EXAMPLE 9

CD

OR

XI

93000000

95000000

98000000

10000000

12000000

12500000

17000000

17500000

18000000

18500000

19000000

19300000

13000000

13500000

14000000

15000000

16000000

16500000

19800000

20000000

IGJNAL

Fl

59783000

58168000

55 702000

I 540 30000

I 362 36000

1 31532000

1-12884000

1-17825000

1-22 720000

1-27559000

1-32329000

1-35153000

I 26750000

I 21901000

1 16997000

1 70 740000-01

1-29200000-01

1-79120000-01

1-39788000

1-41615000

RE A

XI

93000000

95000000

98000000

10000000

12000000

12500000

13000000

13500000

14000000

15000000

16000000

16500000

17000000

17500000

18000000

18500000

19000000

19300000

19800000

20000000

RRANGED

FI

59 783000

58168000

55702000

1 54030000

1 36236000

1 31532000

1 26750000

1 21901000

1 16997000

1 70740000-01

1-29200000-01

1-791.20000-01

1-12884000

1-17825000

1-22720000

1-27559000

1-32 329000

1-35153000

1-39788000

1-41615000

0000001

0000002

0000003

0000004

0000005

0000006

0000007

0000008

0000009

0000010

0000011

0000012

0000013

0000014

0000015

0000016

0000017

0000018

0000019

0000020

0000021

0000022

FIGURE 2.5-

The program contains two new concepts wnicn nave nox Deen aiscussea.

Note first the name

on line 9- This is used as a reference for f(X..«)• The above is an

illustration of an indexed name of the form

A. (V, + n)

where A is a defined base name, B is the name of an index

and n is an integer. The resulting name is obtained by increasing (or

decreasing) the existing value of B by n and adding this result to the base

name A. That is, the parenthesized expression is evaluated and the resulting

integer is added to A to obtain the resulting name. If for example, the

existing value of I is 7, then

Fl,(l + l) represents the name F9

Fl,(l = 3) represents the namp FR

Next, on line 10 is an illustration of the INC statement of the form

INC(A = A + n)

where A is the name of an index and n is an explicit integer. This statement

is eenerallv used to increase (or decrease' index values bv constant amounts.

(More general means for operating on integer values will be illustrated in

later examples) For our example we wrote

INC(J = J - l)

which told the conrouter to dimish the value of J bv one.

82

This example illustrates the LIST order-type word which is used for

two purpo s e s;

a.) It is used by the programmer to obtain a listing which shows the

one to one correspondence between the symbolic names in his program and unique

integers. The unique integers represent the absolute machine names of the

internal storage units. Hence this listing shows the programmer the explicit

storage assignment by the FORAST compiler. Since the compiler does not check

for all possible violations and conflicts, a study of the listing can reveal

conflicts of storage assignment or other programming errors.

b.) It is used by the professional programmer to obtain the absolute

machine language corresponding to his symbolic FORAST language. We will

indicate how this is obtained and list the absolute machine language of

EXAMPLE 10; however, we leave the interpretation to the professional programmer.

During the transformation from the symbolic FORAST language to the absolute

machine language, indications of errors will be printed to inform the pro-

grammer of the errors. Further, the listing (dictionary) referred to under

a.) above will be produced and no attempt will be made to execute the program.

The novice will find on many occassions that even though no errors were detect-

ed during compilation, his program does not run correctly. In such a case, no

dictionary is obtained and to begin to determine a source of error (or errors)

it is advisable to obtain the dictionary. To obtain the dictionary, we simply

record LIST in columns 7 through 10 of a card and place this card in front of

the END card. This indicates that the dictionary is desired and will be pro-

duced whether or not any errors are detected during compilation. (When the

absolute machine language is desired in addition to the dictionary, S.CODE is

recorded beginning in column 11 of the LIST card referred to above).

We have inserted a LIST card in the program of EXAMPLE 10.

are listed in FIGURE 2k.

Q7

23 JULY,63 PAGE 1
PROB C906 M.J. ROMANELLI 45107 EXAMPLE 10 1

BL0C(Xl-X44)X'I-X'44) 2

SYN (F1=X25) 3

START READ(44)N0S.AT(X1) 4

MOVE(44)NOS.FROM(XI)TO(X'L) 5

SET(I=0) 6

TSTFWO IFUl,K=X2,1)GOTO(CI) 7

T=X1,1S X1,I=X2VIZ X2,I=T 8

r = Fl,U Fl, I = Fl,I 1 + 1)* Fl,(I + i)=TX J=I 9

CJ IF-INTIJ=0)GOTO(TSTFWO)* INC(J=J-1) 10

1 F { X1, J<=X2, Jl) GO TO (TSTFWO) % 11

T=X1,JS Xl»JsX2tJX X2,J=T 12

T=F1,J* Fit J=F1, (I J + l)* Fl((J + l) = TZ GOTOICJJ 13

CI C0UNT(19)INCI)G0T0{T5TFWD)S 14
03
•^ PRINT< ORIGINAL REARRANGEO> 15

PRINT< XI FI XI FI>* SET(I=0) 16

WORK PRINTlX'l, nX'25,,1)X1,I)IF1,I U COUNT (20) IN (1) GOTO (WORK) 17

GOTO(N.PROB) 18

LIST S.COOE 18.1

END GOTO(START) 19

93000000 00 95000000 00 98000000 00 10000000 01 12000000 01 12500000 01

17000000 01 17500000 01 18000000 01 18b00000 01 19000000 01 19300000 01

13000000 01 13500000 01 14000000 01 15000000 01 16000000 01 16500000 01

19800000 01 20000000 01

59783000 00 58168000 00 55702000 00 54030000 00 36236000 00 31532000 00

-12884000 00-17825000 00-22720000 00-27559000 00-32329000 00-35153000 00

26750000 00 21901000 00 16997000 00 70740000-01-29200000-01-79120000-01

-39788000 00-41615000 00

MAV.23t63 BRLESC FORAST F62
PROB C906 M.J. ROMANIELLI 45107

00 vn

CI
CJ
Fl
I
J

118
I OF
143
OOK
00 S

SM
I
I

N.PROB
START
T
TSTFWD
WORK

N70
100
157
106
126

M

MAV.23»63 BRLESC FORAST F62
PROB C906 M.J. ROMANELLI 45107

EXAMPLE 10

XI 12S
X44 001
X«l 158
X'44 001
%INDEX OOM

BSM
B
B M
B

XIMOS.
«SUBS.

OSO
N70

EXAMPLE 10

1.00 05 6K 0 70
104 13 8000 2N 103
1.08 KK 02812N2812S
ION KK 0 15728144
110 622N12N2N12S 106
1.14 KK 02N143 157
118 1328000 13 106
UN IF 0 0 0
1.20 IF 0 37640000
1.24 IF 1667J0000 0
1.28 1028143 0 0

OF 12S 2N 1
0128000 0 0
KK 0 1572812N
KK. 0 K S
KK 02N12S 157
KK 02N1L442N143
05 6N 0 71
IF 295511K694655J5
IF 0 016640
0128000 0 0
1328000 14 126

01 8000 NOOO10000
622812N2812S 118
KK 028143 157
S6 S 50 106
KK 02N12N2N12S
KK 0 1572N144
IF 0 0 9K9
1F53J00 0 0
IF 0 0 37
05 6N 0 71
04 0 0 N70

MAY.23»63
PROB C

OR I
XI

93000000
95000000
98000000
10000000
1.2000000
12500000
17000000
17500000
1.8000000
18500000
1.9000000
L9300000
13000000
13500000
14000000
15000000
16000000
16500000
19800000
20000000

BRLESC
.906 M,

GINAL
FI

597830
581680
557020

I 540300
1 362360
I 315320
1-128840
1-178250
1-227200
1-275590
1-323290
1-351530
I 267500
1 219010
1 169970
1 707400
1-292000
1-791200
1-397880
1-416150

FORAST F62
J. ROMANELLI 45107 EXAMPLE 10

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00-01
00-01
00-01
00
00

RE A
XI

93000000
95000000
98000000
10000000
12000000
12500000
13000000
13500000
14000000
15000000
16000000
16500000
17000000
17500000
18000000
18500000
19000000
19300000
19800000
20000000

RRANGED
FI

59783000
58168000
55702000

1 54030000
1 362 36000
1 31532000
1 26750000
1 21901000
1 16997000
1 70740000-01
1-29200000-01
1-79120000-01
1-12884000
1-17825000
1-22720000
1-27559000
1-32329000
1-35153000
1-39788000
1-41615000

KN 812S 0 8158
KK 02812S 157
KK 02814428143
022LLLL 0 0
KK 0 1572M12N
04 0 0 10F
1F6576654630 0
05 6N 0 71
1F64000 0 0
1028158281702812S

0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000008
0000009
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017
0000018
0000019
0000020
0000021
0000022

FIGURE 2k.

Note first that all of the symbolic names used in the program are listed

in "alphabetical" order. (Numerals in general are "less than" any alphabetic

character and appear in the "alphabetical sequence" before any alphabetic

character). Immediately to the right of a symbolic name is the unique integer

assigned by the compiler. This integer is recorded in the sexadecimal number

system, (base l6). The characters in this system which correspond to the

decimal ten, eleven fifteen are respectively K.S.N.J.F and L. Hence the

integer listed corresponding to the symbolic name

; XI is 12S

which represents the decimal integer

1 x (loj + dx[±oj + ±±x^±o; = doo 1- OCL -r ±± = d.yy.

The integer (absolute machine name) is generally followed by one or more of

the alphabetic characters, A,B,F,I,L,M,R,S or U. Only a few of the meanings

are listed below, the meanings of each are given in J 1.1

B indicates a BLOC name and opposite the end name of the BLOC

1 ü CXI 1 111 U^, & •*" mix^ll J- ' ^ \~r J- *^ i-i *^ i A V *_< \y± i •— «.i A -i. .^ v^ j. A*I u ^*-w w -*. * *Q "^ -* w -• v— - -

the elements of the BLOC;

F indicates the name of a function;

I indicates that the name is an index name;

L indicates a name that was recorded in the LOCATION columns,

usually a statement name;

S indicates that the name was defined in a SYN statement.

U indicates that the name appeared only once In the program

and hence this single reference may indicate a programming

nr nunr^hi r\e error.

Ob

As an illustration of an undetected error, suppose on line 7 of EXAMPLE 10

one wrote GOTO(Cl) and on line lk in the LOCATION column one wrote CI. Note

that

Cl ^ CI

and both Cl and CI are distinct and valid names. Both would appear in the

dictionary followed by the letter U to indicate single references. The

obvious error is that Cl and CI were not designed as distinct references,

and either the 1 should be changed to I or the I to 1. The last three entries

in the listing

% INDEX

% NOS.

SUBS.

correspond to the extent of the storage used for indices, constants and

functions. The integer opposite $> INDEX corresponds to the integer that

would be assigned to the next index encountered. Similarly, the integer

opposite $ NOS. corresponds to the integer that would be assigned to the next

constant encountered. Finally, the functions (subroutines) are allocated

space at the end of internal storage (largest integers) and hence the next

function encountered would be assigned space just above the integer opposite

io SUBS.

87

This example introduces the CLEAR and SETEA statements and illustrates

convenient variations of the COUNT, READ and BLOC statements.

GIVEN: X. and f(X.) recorded on cards in standard form, i = 1.2. .20

where

Assume the X. are in monotone sequence.

REQUIRED: Compute and print a table of forward differences.

..] ..1-1 ..1-1
A: = A: - AT ,
l i l-l

j = 1, 2, 5, h

1 = -L, Ü, 3 , 20

A° = f

and all undefined A's = 0, i.e.,

£j = 0 for j = 1, 2, 3, k

A^ = 0 for j = 2, 3, U,- etc.

Print the table in the following form:

X,I F,I 1DEL,I 2DEL,I 3DEL

x, f(xj 0 0 0
L J

X2 f(x2)
1
A2

0 0

V -P/V \ ,1
"5

,2

\ H\) .1 ^
^

X5 f(xs)
i

*

o *

< ^

88

There are many ways that one can obtain the solution for this example.

We chose the method indicated in the flow-chart of FIGURE 25 to illustrate

a variation of the BLOC statement which permits us to conveniently index and

reference elements in a two dimensional array. Illustrated below is a svmbolic

form of the desired two dimensional table.

0 0 0 0

0 0 0
~2 ~2

Al
x3 "3

A2

~5
o 0

h 4 .2 .3

f
5 i P

*5
=>

%

h

20 X20 f6 4o 4o 4o 4

We have labelled the rows of the table 1 through 20 and the columns

1 through 6. Note that the entries in the first two columns correspond to the

given u.ata. one ^.. and f(X.),

To reserve internal storage space for this array we write the BLOC state-

ment

BLOC(El,1 - E20,6)

The first name in the enclosed parenthesis, El,l defines the name of the

first element in the array; in particular it defines the name of the element

in the first row and first column. The last name in the enclosed parentheses,

89

E20,u defines the last element in the array; in particular E20,6 defines the

element in the 20th row and 6th column. Hence, space is reserved for the 120

elements in the 20 by 6 array. Having defined the array with the BLOC state-

TT1Q Tl"4~ C?llVlCQmiQn+ V*C*'Fc*'VaY~l/tC*C "f" /"^ nt^lf 0*1 raTWQ VI 4" *1V~1 4* Vl /-i m ~lr*-v*m T r rt r^ n Vi/-\ mn /3 r-\ \~.i r T T-V.-I 4-1 «rf
1111-li.U, üUULj^^UtlHy X tX <^X K^11V_<^ O t^W 0-i-l,y CiClUCiHi Xll W1C CIX X O. V Uail UC 1UO.U.C UV WllUlllg

E followed by the explicit integers which define the row and column, the row

and column integers must be separated by a comma. For example, we can refer

t.n flX I "hv writinCT Y.^ . ^ anrl ^imilaylv VP> r>an ypfpT* t.n V W uritincr TT^ "I

Further, any of these references may be used as a base name in a general index

name. For example,

Ei,i,J

is a valid name and the particular element referenced depends on the existing

value of J.

Tf T — 1 "E1! 1 T -? r- nm^,mlAn+ +^ 4-V, ~ r,n•^ T?1 O m-, A „,^^„„„ +„ „ 1 „ • „ „ 4- -P
XX CV — _1_ , XJX. , _i_ j U _LO C^UlVClXClHy L/W IJILC HCUIiC XJ_L , C_ CX i 1VX X C X C X ö UU CLdllCIIU X-, •

If J = 7. E1,1,J is equivalent to the name E2,2 and refers to element f„.

If J = h, E2,3;J is equivalent to the name E3,l and refers to element x^.

The programmer must bear in mind that successive elements in a row are spaced

unc: Lxiix o apai o wucicaü ö nutjcrü öX V C C:_LC:IIICII Uü XII oxxc I^U-LLUIUIö aic öjjcafjtru. öXä UXIJ. O

apart. Hence, to advance references from one element to another the index

values must be manipulated accordingly. The flow-chart for this example is

chrain -i n PTfiTTRlT PR

on

STAKT
-i r\ T 11

AX = ^ = ^ = AH
O 0 O 0

= 0 NXTLIN GENDIF

READ: X. and f(X.)
l l

j = 0 i = i + h- r-> E2,3,j = E2,2,j - El,2,j ? h>

V

No

J = J + 1

V
Yes

j <K + k ?

1 1\T.PR0"R, 1

1 Yes

No

Undefined A' s = 0
PRINT: Table

f s ^ ^ _1_ o J ,J - Ü T c

FLOW CHART FOR EXAMPLE 11.

FIGURE 25.

12 3 h Note first the indication that the elements A , A , A and A are to be
O' O' o o

defined as zero since they correspond to undefined differences. To instruct

the computer to do this we use the convenient CLEAR statement which is of the

form

CLEAR(A)NOS.AT(B)#

where A is the name of an index or an explicit integer, and B is the name of

the first of the consecutive quantities that are to be cleared, i.e., their

numerical values are set to zero. If A is the name of an index, then the

current value of that index specifies the number of quantities that are to be

91

cleared, if A is an integer then the integer defines the number of quantities

that are to "be cleared. It is assumed that the quantities are uniformly spaced

in internal storage and in the absence of a specified spacing it is taken to

be unity. If a spacing other than unity is desired it is specified by follow-

ing the name B with a slash, /, followed by the integer which defines the

spacing. For example, if we want to clear all of the elements in the Uth

CLEAR(20)NOS.AT(El,k/6)$

For our example we write

CLEAR (h)N0S. AT (El, 3)<f>

Next, to read and record the given X. and f(X.) in th first two columns
' 11

of the reserved array, we use a variation of the READ statement where we can

specify that the uniform spacing of the quantities to be recorded is not unity.

In T»srtj cnlar- the uniform s^acin0, is six hence we write

READ(2O)NOS.AT(EI, 1/6)56

which provides for the reading and recording of the twenty X.'s in the reserved

area. Similarly, we write

READ(20)N0S.AT(E1,2/6)56

which provides for the reading and recording of the twenty f(,X.!s; in the

reserved area.

Now, assuming that the given data have been read and recorded in the

reserved area, we plan to generalize the difference definition so that by

generating prescribed values of an index we will instruct the computer to

üuiii^iuoc anu xcuuiu. one uiucicnces lui a, given J_j.ne. J-Iieil we will lllüuruci. bile

computer to repeat the process for subsequent lines.

To generalize, note that each difference is defined as the difference of

two neighboring quantities in the array, namely the preceding row element minus

92

its preceding column element. In particular,

E2,3 = E2,2 - El,2

E3,3 = E5.2 - E2.2

and in general we can define

E2,3,J = E2,2,j - E1,2,J

to obtain all of the desired differences provided that J takes on prescribed

values.

First, if J took on values 0,1,2, and 3 we would obtain results for the

second row; however, only the first difference A_,, is defined.

Next, if J took on values 6,7,8 and 9 we would obtain results for the

ouira xuw, nuwcrvcrx , uii-L^y unc x JLX ö o owu LLHICICIH-CD ^J± . oiixo x <-»w axe U.CXXüCU..

Similarly, if J took on values 12,15,lU and 15 we would obtain results

for the 4th row; here the first three differences are defined.

Finally, if J took on values 18,19,20 and 21 we would obtain the differ-

ences for the 5 th row. In row 5 and subsequent rows all differences are defined:

For convenience, we will "nennit the computer to commute and record the

incorrect differences in the 2nd, 3rd and 4th rows to maintain generality.

Prior to printing the desired table, we will instruct the computer to replace

the few "incorrect" differences with their correct zero values.

To achieve the generality, note that the index j is set to zero, and for

j =0-1-2 and 3 the general definition

E2,3,J = E2,2,J - E1,2,J

will provide the four entries for the second row. Prior to entering the

general definition, we set another index, j to have value j + 4 so that we
- - o

can use a COUNT statement to automatically advance j by unity and terminate

the computations after the four differences for a given row have been computed

y?

and recorded. The COÜJNT statement will have the form

COUM
,
(JO)IN(J)GOTO(NXTLIN)

After the differences for a given row have been computed and recorded,

we ins oiuc o one computer oO UGuermine ii an rows nave USGH compj_eteu. >igain

we can use a COUNT statement for this purpose since we know the precise number

of rows that we want processed. Further, if all rows have not been -processed.

KJIIQ existing va_i.ue OJ. U SHOUJ-U UQ auVSaGGu uy c_ u0 commence une conipuuauions

for the next row. Again, the COUNT statement is convenient for both purposes;

the determination as to whether all rows have been processed; and the auto-

matic increase of the index ^ b^r 2. The COUNT statement which will achieve

both is written in the form

uuwiii ^_I__I_-T/ i_yj.ii^u yw^vj-O^ii^i..!. -LJ_I. J.» J pj

This variation of the COUNT statement specifies that the current value of

+V10 nn^ov -T n_c +Q ho ad^an^^d ~^~^r ^ thori r^o+OTMTI-1 ri^ -T^-F this n°w valu° of *X *C llU

If J <li4, go to next line, otherwise continue with the statement immediately

following this COUNT statement. Note that the specification of the amount by

which the index is to be advanced is specified after the slash following the

maximum count, 114. ^Tne student should verify that the maximum count, 114,

will indeed provide for the processing of the 20th row and terminate the compu-

tation of the general differences. He should also verify that maximum counts

Note that after all rows have been processed we instruct the computer to

replace the few incorrect undefined differences with their correct zero values

and then print the desired table.

We stated previously that at NXTLIN we would instruct the computer to

let another index, j ,take on a value equal to j +4. Here we use the con-

venient SETEA statement which has the general form

SETEA(A = B,C + n)

QU

A and C are index names:

B is any name;

n is an explicit integer.

-i i . n I T -i /"« LIMIT -esu_i_x 01 xne generaj. DJITI

Index A takes on a value enual to the name B + the exist-in*7 value

of C + n.

(Note, not the "value" of B and not the "name" C).

For our example we wrote

SETEA(J0 = , J + k)

A more general means for operating on integers is provided by prefixing

formulas with the name INT . Prefixing formulas with INT indicates a departure

from standard floating-point operations and in particular indicates that in-

teger arithmetic is to be used to obtain the result. For example,

INT(A = B + 3 - C * D/E)

•* c? ~* rd 1 -i ^ -r-iT» /~\t r-iflft^ +V\«3+ "D f "Pi Qn^ TP Q-y^^üi Y-iom^iC r-cP QVT PTT nrr -i n +• a rra T» c? an^ n m +• a T» _ X D VCl±±U Uj. W V XU.CU. UllCt U XJ • \J y ±J C3,11U. -I-! CiA ^ I laillt O WJ. ^.^.J- LJ UXll^ J.11 Ul—£^l~ J. U U»11^L J_i.i. l_-_ j. —

mediate operations do not yield results which exceed the restricted range of

permissible integer representation. (For compatibility on both ORDVAC and
19 BRLESC, index integer values should not exceed 2 in magnitude- non-index

integers are permitted and for compatibility on both ORDVAC and BRLESC should

not exceed 2.jy in magnitude). A further note of caution to the novice, inter-

nal representation of integers necessitates special rules for integer operat-

J.U110 wiixuii au nut/ ^iciu CAaui. muc^ci rcbtauü. 11 , lur C-A.ca.mpxt: , ±n isLLt^ auuvc

INT statement, existing values of D and E are 1 and 3 respectively, then

UZE = 1/3 and the computers will yield 1 as the result for D/E. In general,

XX UIJ.C X CD U_X O Ul Xll OCgCI U.X V X OX Uli XD CL pUDlUlVC iil±ACU IILUIIUCX j 1 X . C . j CLII XII"

teger part and a fractional part), the integer result assigned is one greater

than the integer part of the mixed number. If the result of integer division

95

"IC? d r"1 £^ *T«3 "t" "1 im YY1 "1 "Vö/^ ril lYYlT-\£^-»'. + Vl ^ infill + n r-> n -1 jrn ^-* /3 -? ,— -4- ^ ,-* <-> -i rrw ^ *3 n v>4-n^nu ~ ^- 1 j-o tA, iitgai^iyt iiu-Ä^^ HLUIIU<^X j uiic icon-LU aoülglicu ID Olic blgucu _LII ue^CI' peil'U

of the mixed number.

The program, input and output for EXAMPLE 11 are listed in FIGURE 26.

Note on line 8 of the program the statement

fid,t = r^p = £i^,o = £o>5 = &5)0 = £i^,o = u jii

This is an example of assigning a numerical result to many distinct quantities.

A result may be assigned to as many as 15 distinct quantities where the name

of each is separated by the equality symbol. We could not conveniently use

the CLEAR statement in this case since all of the elements were not uniformly

spaced in internal storage.

96

MAY.23,63 BRLESC FORAST F62

PKOB. C906 M.J. ROMANELLI 45107 EXAMPLE 11

X,I F,I 1DEL,I 2DEL,1

93000000 59783000 00000000 00000000

95000000 58168000 -16150000- -01 00000000

98000000 55702000 -24660000- -01- -85100000

10000000] L 54030000 -16720000- -01 79400000

12000000 J L 36236000 -17794000 -16122000

12500000 J L 31532000 -47040000- -01 13090000

13000000] L 26750000 -47820000- -01- -78000000

13500000 J L 21901000 -48490000- -01- -67000000

14000000 1 L 16997000 -49040000- -01- -55000000

15000000] L 70740000- •01-99230000- -01- -50190000

16000000 J L-29200000- -01-99940000- -01- -71000000

16500000] L-79120000- -01-49920000- -01 50020000

17000000 1 L-12884000 -49720000- -01 200 00000

17500000 L-17825000 -49410000- -01 31000000

18000000 J L-22720000 -48950000- -01 46000000

18500000] L-27559000 -48390000- -01 56000000

19000000 1 L-32329000 -47700000- -01 69000000

19300000] L-35I53000 -28240000- -01 19460000

19800000 1 .-39788000 -46350000- -01- -18110000

20000000] -41615000 -18270000- •01 28080000

30EL,I

00000000

00000000

-02 00000000

-02 16450000-01

-16916000

29212000

-03-13168000

-03 11000000-03

-03 12000000-03

-01-49640000-01

-03 49480000-01

-01 50730000-01

-03-49820000-01

-03 11000000-03

-03 15000000-03

-03 10000000-03

-03 13000000-03

-01 18770000-01

-01-37570000-01

-01 46190000-01

40EL, I

00000000

00000000

00000000

00000000

-18561000

46128000

-42380000

13179000

10000000-04

-49 760000-01

99120000-01

12500000-02

-10055000

49930000-01

40000000-04

-50000000-04

30000000-04

18640000-01

-56340000-01

8 3760000-01

0000001

0000002

0000003

0000004

0000005

0000006

0000007

0000008

0000009

0000010

0000011

0000012

0000013

0000014

0000015

0000016

0000017

0000018

0000019

0000020

0000021

FIGURE 26.

£AHJYLf.Li£, _!_£.

Specific indications of errors detected during compilation of a program

are recorded on an output device to inform the programmer of the particular

errors detected. To illustrate the particular information obtained pertain-

ing to detected errors, we wrote a short program which contains several pro-

gramming errors, »ve suumiuueu nie program ^o one computer} Ouoaineu. anu.

listed the results so that one can correlate the information produced with

the particular statements of the program submitted.

The program and output obtained are listed in FIGURE 27 below.

100

PROB C906 M.J. ROMANELLI 45107 EXAMPLE 12

START X=Y*ZSK U=V-W? A=B»C D=SIN(X/W)

E=XVI+GL«2VK

F=785..3<999

[F-ABS(X=Y)GOTO[CHINA)

IF-INC(J = 0)GOTO(ALASKA)

Ff x;i = x**2

C0UNT150)IN(J)GOTO(FRANCE)

HOVE (IM) NOS. FROM (AvI)TO(B•J)GOTO(SI AM)

END GOTO(BEGIN)

2 3 JULY,63 PAGE 1
1

2

3

4

5

6

7

8

9

10

o

ERROR 45 ILL, = 3 2 =SIN(X/W

ERROR 03 2 COMMAS 2 3 ,K

ERROR 35 ILL,< OR > 1 4 99

ERROR 08 ABS UM IF= 1 5 Y

ERROR 11 ILL PAR IF 1 6 (J=0

ERROR 01 ILL. O.T. I 7 (X)=X**2

ERROR 14 CL MV NO I A 9 SI AM)

ERROR 23 END SYMB. 2 10)

MAY.23f63 BRLESC FORAST F62

PROB C906 M.J. ROMANELLI 45107

X=Y+ZS U=V

E = X, I+G1»2

F=785.3<99

IF-ABS(X=Y

IF-INC1J=0

F(X)=X**2

IMOVE(N)NOS

GOTO(BEGIN

EXAMPLE 12

PROB C906

PROB C906

PROB C906

PROB C906

PROB C906

PROB C906

PROB C906

PROB C906

M.J.

M.J.

M.J.

M.J.

M.J.

M.J.

M.J.

M.J.

ROMANELL

ROMANELL

ROMANELL

ROMANELL

ROMANELL

ROMANELL

ROMANELL

ROMANELL

A 105 MU

B 106 MU

BEGIN 107 MU

FRANCE 108 MU

Gll 109 MU

I OOS IU

J OOK I

START 100 L U

U 10K MU

V 10S MU

W

X

Y

Z

ION

10J

1.0F

10L

MU

MU

MU

MU

SNOS.

«SUBS.

OSO

N7 0

% INDEX OON

FIGURE ZT

Programs in general contain many statements and consequently many cards.

Since errors are detected during compilation, of immediate concern to the

programmer is the recognition of the errors. In particular, which card or

cards contain the errors? Identifying the cards which contain the errors

presents no problem to the compiler; however, it is the responsibility of

the programmer to use the means provided for this purpose. This requires the

programmer to uniquely identify each card of his program so that the compiler

will provide the unique identification. In particular, the programmer should

use the identification columns provided on the standard programming sheets

and as suggested previously, simple numerical ordering will suffice to quickly

l r^ p>n*h l fNr +Vi*=> r>^T,{^ nr nsvrlQ "^hich COPta1' n ^"^T"'"»"^^ Tn rrpnoral i.7Vion +V10 nnm =

piier detects an error, it will record a line of information on the output

device, (cards or teletype). A portion of the information recorded is the

identification of the card that contains the error= Hence if the "nrocrammer

uses the simple numerical ordering scheme, the compiler will record on the

output device the identifying number (or that number + l) that appeared on

the card containing the error. Other relevant information is recorded per-

taining to the error; however, identification of the card is most important.

The results shown in FIGURE 2J correspond to the compilation errors detected

on BRLESC . Similar but less detailed results are obtained from ORDVAC. Tables

T.TVI I r»Vi r» T Q c c -i -fir + Vi c^ + imc c /~\-f* QV^A^P »ny^ rfn iron r\-n T-IO rm c , ,. 7ft +Vi?*s-Yiirth ftO nf Til
I ^y oiij. ungn ^st-~ WJ. j _i_ j

The essential difference between the ORDVAC and BRLESC results Is the amount

of detail information recorded pertaining to the error. ORDVAC results in-

rHr»n-hi=> +.Vi*s nln^^ifiVfltinn ~h-\mo nf* i=>~r~rn"r . ~hhi=> fnrH pnH f IPI H nf* -hVip> p?!rH that.
— j..—~._ „»»>. •—^^.^^^^^ ^„^ -j e-~ — —*• - w ~ } -"- •—- — •— ^ ^^.^^ „* -»»-_ —^~ „».

contains the error. BRLESC prints the word ERROR, the first and subsequent

characters of the field containing the error, the characters recorded in

columns 11 through 20 of the card in addition to the classification, card and

field identification. BRLESC also prints the first 30 characters that were

recorded on the PROB card.

102

Wnen ° *** Q>t>»Av» An Q CQ,X*(3. is detected the remainder of that card is

ignored. Further, if the error was detected near the end of a card the next

card may also be ignored, hence, all errors may not be detected in a single

nnnmi'la + i• Th^ nrnffTsmmpr crfinpral 1 v lisps a. pnnvpnti final TirnnpRR of

elimination of errors; i.e., he submits a program, corrects the detected

errors, re-submits his program, corrects and re-submits until no further

compilation errors are detected. Depending on the nature and complexity of

the program, several compilations may be necessary to detect all of the errors.

Note in FIGURE 27, indication of errors on cards 2,5,^-,5,6,7;9 an(3- 10-

The student should study, identify and correct each of the errors indicated.

xup

EXAMPLE 15.

The fact that the compiler does not detect any errors in a given program

does not infer that there are not errors in the program. Another type of error

TJI-TI r»Vi rrflir "Ho (^o+or»+oH r»Qn /~»r»r»n-K. r^nv-Tnrr -HV10 o-vo^n+nrMn r^-F -f-Vio «nmni 1 o^ -v-»-r*/-M-r-r*cirvi

For example, one may write a valid statement

7 _ QOTjrpCvN

and through an error in input or otherwise the existing value of X may become

less than zero. Similarly one may write

Z = ARCSINCX,
1

and at some point in the computation X may attain an existing value much greater

than one in magnitude due to an error in in^ut or otherwise*

Errors which occur during execution are not as easily identified as those

detected during compilation. Here again, the responsibility of correlating

the error with the program lies with the programmer. Many of the function sub-

routines (the functions of single and multiple arguments) include checks for

errors. If errors are detected during execution, information is recorded on

an output device and the computer will stop unless the programmer provides for

continuation. If for example, the programmer wrote twenty distinct statements

involving the SORT function, relevant information is recorded on the output
,}„,...:,-.„ ^^-«4-^ -: ^-s ^«. 4- ^ 4-i^~ ~-„-„^-v, -; ~ 4-v^ crYDrp <-,-«.,-r-,n•,^~4-. V^TT^-..-^-*. -; ^^*n4--T P-I'^.o 4-T ^*n U.CV-LUC pcj. uaxuxng ou oner cnui _i_n one v_j»qy.\j- cxi. £,i-uiidi o, uuncvci , lucu^n i^auxun

as to which of the twenty caused the error is the responsibility of the pro-

grammer .

To provide for continuation after an error is detected and relevant in-

formation printed, the programmer must include in his program the location

name, ERROR. At the place called ERROR in his program, the programmer may pro-

vide for whatever action he desires. He may for example, at ERROR, instruct

the computer to print the twenty arguments of the twenty square roots so that

10U

he can then ascertain which of the twenty caused the error. At ERROR one

could write instructions which test each of the twenty arguments to determine

and identify which of the twenty was less than zero and provide for corrective

action and continuation without stopping the execution of the program.

In the example which follows we will illustrate the use of ERROR so that

the computer will not stop after the first error encountered. In particular,

at ERROR, we will instruct the computer to print GOOF AGAIN and continue with

the next statement in the program. In this way we can illustrate the pertinent

information recorded corresponding to several types of errors.

The program and output are listed in FIGURE 28.

105

O
ON

23 JULY,63 PAGE 1
PROB C906 M. J.ROMANELLI 45107 EXAMPLE 13 1

START X=-.00O0O00OOlI Y=1000C)00000* P I = 3.1415926536 2

SET(SPÜ=2.)* Z=SQRT(X) 3

2. StT(SIPD = 3.)% W=LOG(X) 4

3. SET(SPD=4.)S Z=Y*Y* A=EXP(Z) 5

4. SET(SPD=5.)X B = AkCSINUL-1000»X) 6

5. SET(SPU=6.>* OC0S(Y»*2) 7

6. SET(SPD=7.)* D=.3*Y? ENTER(POWER)X)D) 8

7. 5ET(SlPü = 8.)% E=rAN(PI/2)Z PRINK E >E 9

8. GOTO(N.PROB) 10

ERROR PRINKGOOF AGAIN >% GO TO I, SPD) 11

END GOTO(START) 12

MAY.23(63 BftLESC FORAST F62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 13 *

RUN ERROR LOG X NEG. MAY.23,63 C906 M.J.ROMANELLI 45107 EX 262-10000000000-09

GOOF AGAIN 0000001
RUN ERROR EXP BIG X MAY.23,6^ C906 M.J.ROMANELLI 45107 EX 265 14426950409 19

GOOF AGAIN 0000002
RUN ERROR ARCS1N 1+ MAY.23,63 C906 M.J.ROMANELLI 45107 EX 269 10000001000 1

GOOF AGAIN 000000 3
RUN ERROR SINCOS N S MAY.23,63 C906 M.J.ROMANELLI 45107 EX 272 15915494309 18

GOOF AGAIN 0000004
RUN ERROR LOG X NEG. MAY.23,63 C906 M.J.ROMANELLI 45107 EX 2905-10000000000-09

GOOF AGAIN 0000005

E -19595930 12 0000006
RUN ERROR NEG. SQRT MAY.23,63 C906 M.J.ROMANELLI 45107 EX

FIGURE 28..

TTrvn »jmT "o i)i
riAwirijn it.

In EXAMPLE 11. the program was designed to compute and print a table of

differences corresponding to the given X. and f(X.) where i = 1,2,...,20;

i.e., it was designed for a table with precisely twenty "rows". Further,

internal storage space was reserved for the complete table of differences.

In this example, we will design another program for a solution to the problem

of EXAMPLE 11, to introduce two new concepts: the program will be designed for

a table of "variable" length, i < 1000; internal storage space will be reserved

for the given data and only two rows of differences.

To provide for reading and recording a "variable" amount of data, the

READ statement specifies the maximum number of quantities to be read and re-

corded and the variable amount of data is terminated with a blank card. The

computers consider a READ statement fulfilled whenever the specified number of

quantities have been read and recorded or whenever a blank card is encountered.

(if a blank card is encountered as the first card, it is ignored;. Correspond-

ing to any READ statement, the precise number of quantities and the precise

number of cards that were read and recorded is made available to the programmer.

In particular, after a READ statement has been executed, the number of quanti-

ties that were read and recorded is available in integer form in index 09.

Similarly, the number of cards that were read and recorded is available in

integer form in index 08. Each subsequent READ statement erases the previous

integers in 08 and 09 and consequently the existing integers in 08 and 09 at

any given time correspond to the latest READ statement that was executed.

(Blank cards are not included in the integer counts).

To instruct the computer to read and record the given X., i = 1,2,...,NX

where NX < 1000, we write

READ(IOOO)NOS.AT(XI)# NX = 09

The above assumes that the X. are in standard form, six per card. If NX <996,

the" "t"*^ X are terminated with a blank card. If for example, there were 997 X's,
1 "

107

X would be recorded in the first field of the 167th card, and even though

the remainder of this card were blank the computer would substitute zeros for

the values of X^g, X^ and X±Q00 ! The

respectively 3000 and IbJ. The statement

the values of X Qo, X and X „ '. The integers in 09 and 08 would be

i\rv _ r>r>

tells the computer to assign a "value" to NX equal to the existing integer in

no •no'

assigned to NX, rather the "value" in index 09 is assigned as the existing

value of NX. We wrote the NX = 09 statement immediately following the READ

c;+.pi+.^Tn^n+. Qn +>m-h \je± w-i 1 1 Vimr*^ in NX the number of XT s rpad After the f'X ^

are read and recorded, we can instruct the computer to check if the number of

X's and f's read are identical. To read and record the f(X) we write

READ(1000)N0S.AT(F1) $ NF = 09

To include the program check we write

IF-INT(NX = NF)GOTO(WORK)$

This conditional statement is immediately followed by a PRINT statement which

identifies and prints the number of Xfs and the number of f's in the event

there is a discrepancy.

To determine the internal storage space required for the four differences

of a given row, we illustrate schematically below the quantities required for

the commutation and "^rintin0". We "plan to compute a row of differences and print

that row immediately.

PI no

f(*i-l) 4-! 4-1 4-i

X.
1

f(x±)
.1

AT
l

.2
A7
l

AT
l

h :
A. i
l !

Dl D2 D3 Bk

108

If we let D1,D2,D.3 and Dh be the names of the four differences in the ith

row and P1,P2,P3 the names of the required differences in the (i-l)st row,

we uau wxxoc

Dl = F.I - F.(l-l)

D2 = Dl - PI

D3 = D2 - P2

Dl+ = D3 - P3

where we prepare in advance for the computations in the next row by writing

PI = Di

P2 = D2

P3 = D3

so that these quantities are available for the computations of the next row of

differences. (We will make special provisions for printing rows with un-

uei xiieu uj_± xfcji'eiictio j • wt: uttvt: useu unt; auuve uui/auiuii ±LL oue ±j_uw-uua.x o

illustrated in FIGURE 29.

109

nmAnm
OXttlYJ." WORK

READ

X
"i

1 :

i =

-1.2 NX: NX < 1000
T /-» •äTTTI . um T r\r\r\

Yes PRINT

column identification

anu a ulanK caru.

JNä = sur •<.

No

\
1
*

PRINT &

IDENTIFY

NX =

NF =

i = 1 X"~ "N.

(N.PROB * 1
i

T>r> T MTP .

i ; X.; f(X.)

lNTn

-*1
i = i + 1

1
/" N AAII f

i < NX + 1 ? v y
ÄTOIT1T
1MA1-L

jYes
f

PRIIMT:

ij X±; f(X.); &

four diffsiTGncGs

PRINT:

i; X.; f(X.); &

\±-± J UXJ.X CICIICCb

Dl

D2

D3

DU

= Dl - PI

= D2 - P2

= D3 = P3
i j 1

1
*

No PI = Dl

P3 = D2
T>Z __ TlZ

Yes i > k ? 4g

iVliUW (JhAKT FOR EXAMPLE 1*4-.

Tin

H
H

23 JULYt63 PAGE I
PROB C90o M. J.ROMANELLI 45107 EXAMPLE 14. 1

BLOC(X-XiOOO)F-F1000)D1~D4 2

START REAOUOOO)NOS.AT(Xl)* NX=09$ READ { 1000) NOS. AT (Fl) % NF = 09 3

IF-INT(NX=NF) GOTO(wlORK) 4

PKlNT-FORMATI SEE1.)-OMUMBER 0F X,S = >NX 5

PRINT-F0KMAT{SEE1.)-<NUMBER 0F F, S = >NF* GOTO(N.PROB) 6

WORK PRINK I X,I F,I IDELI 2DELI 3DELI> 7

CONK 4L3ELI>* E:MTER(PRINTBU SET(I = 1U 8

PRIi\iT-FORMAT(SEtl.)-{ I)X, I)F, I 9

AATl COUNTJNX+1)INII)G0TO(N.LINE)* GOTOIN.PROB) 10

N.LINE Dl = F,I-F,< I-1U D2=ül~Pl% Ü3=D2-P2S D4=D3-P3 11

Pl=Ul* P2=02* P3=D3% IF-INT(1>4) GOTO(GENPR) 12

PRINT-FORMAT(SEE 1.)-(I)x•I)F, 1 }{I- 1)NOS.AT(01)% GOTO«AAT I) 13

GENPR PRINT-IF0RMAT(SEE1.)-(I)X,I)F,I) (4) NOS. A T (01) % GOTO(AATI) 14

SEF1. FORM(4-5)3-2)1-I)12-1-7)3-2) 1-6)2 15

ENU GOTO(START) 16

93000000 00 95000000 00 98000000 00 10000000 01 12000000 01 12500000 01

13000000 01 13500000 01 14000000 01 15000000 01 16000000 01 16500000 01

17000000 01 17500000 01 18000000 01 18500000 01 19000000 01 19300000 01

19800000 01 2 0000000 01

59783000 00 58168000 00 55702000 00 54030000 00 36236000 00 31532000 00

26750000 00 21901000 00 16997000 00 70740000-0 1-29200000-01-79120000-01

-12384000 00-17825000 00-22720000 00-27559000 00-32329000 00-35153000 00

-39788000 00-tl615000 00

H
H
VW

MAY.23»63 BRLESC FORAST F62

PROB C906 M.J.KOMANELLI 45107 EXAMPLE 14. •

I X,I F,I 1DELI 2DELI 3DELI 4DELI 0000001

1 .9300 .5978

2 .9500 .581.7 - .0161

3 .9800 .5570 - .024 7 - .0085

4 1.0000 .540 3 - .0167 .00 79 .0165

5 1.2000 .3624 - .1779 - .1612 - .1692 - .1856

6 1.2500 .3153 - .0470 . 1309 .2921 .4613

7 1.3000 .2675 - .0478 - .0008 - .1317 - .42 38

8 1.3500 .2190 - .0485 - .0007 .0001 .1318

9 1.4000 .1700 - .0490 - .0005 .0001 .0000

10 1.5000 .0 707 - .0992 - .0502 - .049b - .0498

11 1.6000 - .0292 - .0999 - .0007 .0495 .0991

12 1.6500 - .0791 - .0499 .0500 .0507 .0013

13 1.7000 - .1288 - .049 7 .0002 - .0498 - .1006

14 1.7500 - .1783 - .0494 .0003 .0001 .0 499

15 1.8000 - .2272 - .0489 .0005 .0002 .0000

16 1.8 500 - .2756 - .0484 .0006 .0001 - .0001

17 1.9000 - .32 33 - .047 7 .000 7 .0001 .0000

18 1.9300 - .3515 - .0282 .0195 .0188 .0186

19 1.9800 - .3979 - .0464 - .0181 - .0376 - .0563

20 2.0000 - .4162 - .0183 .0281 .0462 .0838

21 .0000 .0000 .4161 .4 344 .406 3 .3602

22 .0000 .0000 .0000 - .4162 - .8 506 -1.2569

23 .0000 .0000 .0000 .0000 .4161 1.2667

24 .0000 .0000 .0000 . 0000

FIGURE 30.

.0000 - .4162

•*T I -1_1 L mure x.nax. we nave uDx.a.ineu iour extraneous lines in wie KiDie, i.e.,

correspond to I = 21,22,23 and 2*4-. To eliminate these, we could have used

a second terminating condition, namely:

TV (YI .T = vi .T = n^oTnCN.PRDTO

This should be inserted after the PRINT statement on line 9 or on a card

114

This example illustrates several of the convenient ENTER statements.

They provide a means of evaluating functions which may require more than one

argument and for which more than one result may be produced. As in the class

of single valued functions of one argument, most of these functions require

fioatlng-point arguments and yield floating-point results. Exceptions WI1J_

be explicitly stated in the descriptions which follow. Arguments for the tri-

gonometric functions and results for the inverse trigonometric functions are

GIVEN: A = - 2

B = 3
C = h. • 5
D = - 6. • 3

REQUIRED: Compute, print and identify the following:

CA = cos(A)

BC = B"

& = arcsin(SA)

W = arctan(,i$/C,J

WC = whole '"art of C

FC = fractional part of C I floating-pt representations
WI = integer form of C j

FI = integer form of FC f integer representations FC y ii
n I

CI = floating-point of NI ? floating-pt representation

TTt-T OTTT-VTTl "7 ~l Tue now cnarx ior xnis example is snown in riuunü pi

115

START

O A _ „;_^H^ T.Tn _
Ort = ö±nv-rt/ nv_. —

CA = cos(A) FC =

W = arctan(B/C) CI =

A = - 2

B = 3

C = U-.5

D = - 6.3

i

Print and Identify :

SA; CA; THETA; BC;.W; WC; FC; CI

WIj FI; NI

'
Print one blank card.

1 ''

Print (standard form)

SA; CA; BC; THETA; W; WC; FC; CI (N.PRO R V« J

.fliUW UliRKT .t'UK UArtWrjatt JLp

FIGURE 31,

lib

The statement

T^NTT^R (RTTJCOR ^ A "\RA ^HA ^

tells the computer to compute "both the sine and cosine of A and to assign

the results to SA and CA respectively.

The statement

ENTER(POWER)B)C)BC

tells the computer to raise the quantity B to the C power and to assign the

result to BC. Since the logarithm function is used to obtain this result,

B > 0 =

The statement

ENTER (ARCSC) SA) CA)THETA

tells the computer to determine the angle THETA whose arcsin and arccos are

respectively SA and CA.

The statement

ENTER(ARTAN)B)C)W

tells the computer to determine the angle W whose arctan is B/C (-«< w< %).

-Llie t> ua ucrlikriiu

ENTER(WH.FRA)C)WC)FC

tells the computer to separate the floating-point quantity C into its whole and

fractional parts, assigning the whole part to WC and the fractional part to FC.

Both parts are recorded in floating-point form.

The statement

ENTER(CVFTOI)C)WI

tells the computer to convert the floating-point quantity C to integer form,

assigning the result to WI. (For rounding purposes, the quantity 10 is first

117

O.U.U.CU. uu u uci ui c UIIC LUIIVCl Ö1UII lb CL x ci; ucu ^ .

The statement

ENTER (CVITOF)NI)CI

teils the computer to convert the integer quantity NI to floating-point form,

assigning the result to CI.

The statement

ENTER(PRINT B)

tells the computer to print one blank card.

The statement

ENTER (ZEROCC)

tells the computer to set the card, counter enua~' to zör>r* uhon -n-^-i m+n mrr

standard card formats, the successive cards produced contain serial identifi-

cation in columns 77 through 80, (output card count). The serial count

commences at one with the first output card Toduced and is advanced b^ one

with each successive card produced until either the count reaches 9999 or when

restored to zero by the above ENTER statement.

Non-standard formats may also include the output card count, however, it

must be specified in the format. We used a special format for the integer

nuantitipK t.ha.t. arp t.n h<= nri nt.nri . Th<= format,

K FORM (U-U)U-U)U-U)2

is of the form

(W T W T W T^

where in each case the length is k and the type is h. The h type tells the

computer that the quantity exists internally as an integer and is to be re-

presented in integer form in the four columns allocated, the units position

on the card corresponding to the fourth column. The characters specified with-

in the *C and ^ of the PRINT statements su_r,ercede the column allocation s^eci-

11Ö

-C* -I . J -T u> -4 - L-, ,-. -C .«1 -vrmll 4- a -I ^-, n y—\-|rt-V» .—I f~* -1-1 /*1V» d "I VI (">• 4" f\ 4" V» /Ti f 4" Q +" QTV1Q V\ 4" lieu j.11 one luirnao, j.. c • , uuucii^uiiuiiig ow one ooa,ucuicnu

PRINT-FORMAT(K) -<WTb=b>WI<bbFI>——

WI is first recorded in columns 1 and 2, then a blank in column 3, the

equality in column U, a blank in column 5 an<3- then the integer in columns

6,7,8 and 9 with insignificant zeroes suppressed, (i.e., replaced by blanks).

Next, blanks are recorded in columns 10 and 11, FI recorded in 12 and 13, etc.

The program, input and output for this example are listed in FIGURE 52.

H
ro
o

23 JULY,63 PAGE 1
PROB C906 Ml. J.ROMANELLI 45107 EXAMPLE 15 I

START A=-2* B=3X C=4„5S D=-6.3 2

ENTER (SINC0S)A)SA)CA)S ENTER (POWER)B)C)BC 3

ENTER (ARCSC)SA)CA)TIHETA? ENTER (ARTAN)B)C)W 4

ENTER (WH.FRA)C)WC)FC* ENTER (CVFTOI)OWI 5

ENTER (CVFT0I)FC)FI)g ENTER (CVFTODD)NI 6

ENTER (CVITOF)NllCI* 7

PRINT<SA = >SA< CA = >CA< THETA = >THETA 8

PRINT<BC = >BC< W = >W < WC = >WC 9

PRIN1XFC = >FC< CI = >CI 10

PRINT-FORMATI;K;I-<WI = >wi< FI = >FI< NI = >IMI 11

ENTER(PRINT 6)Z ENTER«ZEROCC)% 12

PKIIMT(SA)CA)THETA)BC)W)WC)FC)CIX GOTO (N.PROB) 13

K FORM (4-4)4-4)4-4)2 14

END GOTO (START) 15

MAY.23,63 BRLESC FORAST F62

PROB C906 H.J.ROMANELLI 4510 7 EXAMPLE 15 »

SA = -90929743 CA = -41614684 THETA = -20000000 1 0000001

BC = 14029612 3 W = 58800260 WC = 40000000 1 0000002

FC = 50000000 CI == -60000000 1 0000003

Wl = 4 FI = NI = - 6

90929743 -41614684 -20000000 1 14029612 3 58800260 40000000 1 0000001

50000000 -60000000 1

FIGURE 32.

0000002

EXAf€>LE l6.

In many problems, the given functions are not always known analytically

and in lieu of explicit analytic definitions discrete tabular data is given.

Similarly, as illustrated in the previous examples, many solutions obtained

from the computers are expressed in tabular form. Hence, in many problems

conventional interpolation is often desired. This example is designed to

illustrate how the ENTER statement provides for interpolation. The statement

has the general form

E!WER(D.B.IN)X)FX)Xl)Fl)tpt)n)ix)if)$

123^5678

where D.D.IN is an abbreviation for divided difference interpolation. As many

as 8 parameters may be specified to describe the particular interpolation

desired. It is assumed that a table of discrete values, X. and f(X.), is

recorded in internal storage, where i = 1,2,...,tpt"and the X. are in monotone

increasing or monotone decreasing sequence. * It is further assumed that the

tabular values are uniformly spaced in internal storage. (This does not mean

that X. n = X. + £X. the uniformitv refers to the space allocation in internal
l+l i '

storage). Further, the uniform spacing of the f(X.) may indeed be different

from the uniform spacing of the independent variable, X.. In general, if we

want the computer to perform particular interpolations, we must specify the

pertinent information. The parameters which follow the ENTER(D.D.IN) tell

the computer the specific information that is required for the interpolation.

The meanings for the parameters are as follows:

X is the name of the argument, i.e., we want the interpolated value

for f(X);

FX is the name of the result, i.e., the result obtained is assigned

as the existing value of FX and hence future references to this

* Since divided differences are used, X. / X. , , for all i
1 ' l+l

121

«»^UHTHAL LIBRARY lauu»•-—

BLULi . OJ-yJ

STEAP-TL

ÜTSSlllt are made t}^r ref erriH0- to th° r'gTno FX*

XI is the name of the first entry in the table of the independent

Fl is the name of the first functional value in the table;

tpt is an integer which specifies the number of points in the table,

i.e., the maximum value of i;

n is an integer which specifies the number of points to be used in

the interpolation, i.e.. if n = 2. linear interpolation is

desired, if n = 3; parabolic interpolation is desired, etc.,

n < 18;

ix is an integer which specifies the uniform spacing of the X. in

internal storage;

if is an integer which specifies the uniform spacing of the f(X.) in

internal storage.

Note that the dependent and independent tabular data need not have the same

uniform spacing. (The last three parameters, n, ix and if may be omitted only

if ix = if = 1 and n = ^ '. In general - the lower case letters listed in

the string of parameters of ENTER statements refer to integer values. As such,

the integers may be expressed explicitly or may be expressed as the existing

values of indices provided the index name is preceded by the mandatory connna.

If for example, the total number of points in a table is 92, one may literally

write 92 in the parenthesis corresponding to tpt. As an alternative, if one

used the name J as an index with existing value 92, for example, SET(j = 92),,
nnn mQ T r T.TT»-T 4- f\ I 1 *•» •+• Vi id T-.Q vtovrfVici nnc (%A>iviarlnAn^T nrr -+- /-\ •+• -1".+

GIVEN:

x
0
. and f(x.), (j = 1,2, ...,10). y. , i = 1,2,3^,5.

x-, < y, <x,rt for i = 1,2,3,^, yc > xn n

122

R'RÜTITR'ETTV

For each y. , determine f (y.) using 2.3.U and 5 point inter-

po_i_a uiOu •

Print and Identify: x; f(x) 2 pt; f(x) 3 pt; f(x) %>t; and

f(x) 5 pt. where x corresponds to the y..

The flow-chart for this example is shown in FIGURE 35*

125

BEGIN

x.
J

f(x.)

j = 1,2,...,10

y-L = -973

y = l.OOOl

y = 1.065

:^ = 1.125

y5 = 1-3

Print Heading

Identification

ERROR

Print:

IS outside range

DIVIDED DIFFERENCE INTERPOLATION

LINEAR PARABOLIC CUBIC QUARTIC
X F(X)2PT F(X)3PT F(X)l4-PT F(X)5PT

H:
RSJ

i = 0

N.PROB U- No

j = 0

Yes

i < 5

i = 1 + 1

INTERP

->•
Use (j+2) pt. Interpolation

to determine f (y. ,)

j = j + 1

Yes
j < k ?

rao

ri+l f(y1+1)2pt;...f(y.+1)5pt

FLOW CHART FOR EXAMPLE l6.

FIGURE 33.

One other general remark concerning the interpolation iunction is Lnax,

extrapolation will be performed provided that the point is not "too far"

outside the given range. Indeed "too far" means that the point must lie

within one Interval at either end of the table. Explicitly this means that

extrapolation for the point X will be performed provided

X. . < X <X. . + (X. . - X. , .)
u LJ \J \J k^ v \J VJ V w fj v _*_

or at the other end,

x1 - (x2 - xx) <X <X1

for monotone increasing X.. Similar conditions hold for extrapolations for
i

mnnnt.nnp» rJPT'T'pa.si re X . „ D -i-

The program, input and output for this example is listed in FIGURE 3^-

125

ro
crs

BEGIN

PROB C906 ROMANELLI C.IL. 45107 EXAMPLE 16

BLOC (YI-Y5)IF2-IF5)X1-X20

SYN (F1=X2)

Yl=.973* Y2 = 1.000i:* Y3=1.085$ Y4=1.125? Y5=1.3?

PRINK OIVIDED DIFFERENCE I NTERPOILAT ION>

ENTERtPKINT B)

23 JULY,63 PAGE

LINEAR PARABOLIC CUBIC QUART IC>

F(X) 5PT>

RSJ

INTIERP

H

XI

ERROR

PRINK

ENTERIPRINT B)

PRINK X FIX) 2PT FIX) 3PT FIX) 4PT

ENTERIPRINT B)S SET{1=0)

SET(J=0)

ENTER(D.D.IN)Yl,I) IF2, J)X1)F1) 10) , J+ 2)2)2)

C0UNT(4) INI J!IG0TO(INTERP)

PRlNT-FORMATl[H)-(Yl, I M4) NOS. AT (I F2)

C0UNT(5)IN«I)G0TO(KSJU GOTO(N.PROB)

FORM!12-1-7)3-2)1-1)12-1-9)3-3)1-4)2

DEC (.9b).81342). .96).81919).98).83050)1).84147)I.02).8 5211

CONTt1.05).86742)1.06).8723b>1.09).88663)1.11).89570) 1.13).90441

PRINK X IS PROBABLY OUTSIDE THE RANGE >% GOTO(N.PROB)?

END GOTOIBEGIN)

1
I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ro

MAY.23»63 BRLESC FÜRAST F62

PROB C906 ROMANELLI C.L. 45107 EXAMPLE 16 *

DIVIDED DIFFERENCE INTERPOLATION 0000001

LINEAR PARABOLIC CUBIC QUARTIC 0000002

X F(X) 2PT FIX) 3PT IF (X) 4PT F(X) 5PT 0000003

.9730 .826541 .826576 .826578 .826579

1.0001 .841523 .841524 .841524 .841524

1.0850 .884252 .884309 .884308 .884309

1.1250 .902233 .902266 .902266 .902267
RUN ERROR D.D.IN MAY-25,63 C906 ROMANELLI C.L« 45107 EXA 286 13000000000 1

+UJ04+USUJV34UK3VMV43K+45NV4TLU/ +N5VTMIT2MUT5MVU5VN0NNV ED-D5

X IS PROBABLY OUTSIDE THE RANGE 0000004

FIGURE 3k.

A study of the program for this example will illustrate some new concepts.

First, we could have used the general READ statement to record the given

tabular data in internal storage. However, to illustrate another means of

recording data in internal storage we have used the

DEC order-type word.

Note you will find on line 17, XI in the LOCATION columns and DEC in the order-

type columns. Beginning in column 11 we have written the numerical values that

correspond to XI, f(Xl), X2, f(X2), etc. Each numerical value is separated by

a parenthesis. These numerical quantities are recorded in consecutive spaces

in internal storage. The first numerical value, -95.> is associated with the

X2, X3, etc. as valid names. To associate these quantities with particular

names for future references we have used BLOC and SYN statements. In the BLOC

statement we wrote (XI - X20) to reserve space and establish X names for these

twenty quantities. In the SYN statement we wrote (Fl = X2) indicating that

the second numerical quantity, .813^-2 was to be associated with either name,

X2 or Fl. Note, also, that under this ordering and arrangement, the X's are

two units apart in internal storage. Likewise the corresponding functional

values are two units apart in internal storage. These concepts permit us to

establish the data and names required for the interpolation. We will make

reference to XI, and Fl and specify that the tabular data is two units apart

both for the X values and F values.

UQ mc-Q^ namoc TITO _ TVR f1n>

also used a non-standard format

for the entries in the output table. The form (12-1-7) specifies that the

numerical value of Y1,I exists in internal storage in floating-point form, wx±e

external form is to be printed with a decimal point after one digit and 7

columns are to be used for entire external representation. The form (3-2)

128

indicates that- 2 blank spaces are to precede the next quantity printed.

The form (l-l) specifies that the preceding forms are to be used just 1 time.

This was inserted since we will indicate repetitions of another form and

repetitions commence with the form immediately following the previous re-

petition form. In the above example, the repetition from (l-l) applies to the

(12-1-7)3-2 whereas the (l-k) repetition form applies to the (12-1-9)3-3).

The form (12-1-9) is similar to the initial form (12-1-7)> the only difference

is in the total number of columns to be allocated for the quantity.

The form (3-3) indicates 3 spaces.

. \ _ - \
The form (l-^) indicates that the total form (12-1-9)3-3) is to be used for

h consecutive quantities, namely the four interpolated functional values,

TT?0 TT?* TTPIl or-,^ TTTC;
_1_4-' c-, _1_J.' ^/ « JLJ." -T c^,±i»_*. J.X y i

The form)2 terminates the format definition.

l^y

PVAMDTT? 17

This example illustrates how the ENTER statement is used to solve a

cirp-f orti r\-f*

is expressed as

or

AX = B

all al2 al3 In

a21 a22 a23 '"" a2n

a . a a _ * " ' a
nl n2 n3 nn

hi

x
1 n b 1 n I

The problem in general is to determine the X ,X ,. ..,X which satisfy the

above system when the elements of A and B are given. To use the convenient

T*TT\J' i'b'.hi Q+.n+dTn^n-h +o cnl vp Qiir»V) n quG + pm +V10 cH \r&r\ pi pmpn+.q mnc+ hp T'oooT'rl &r\

in consecutive spaces of internal storage by rows. That is, the prescribed

order is as follows:

all'al2'ai3' * * • 'ain'Va21'a22' ' ' * 'a2n'V >K nn n

One should reserve spaces for the n x (n+l) consecutive given elements, the

A and B. bv usine the BLOC statement. Here, one mav define a linear BLOC, sav
A f .-, \1 r , 1

H_L - a in x vn+-LM or a "two aimensionaj. array, H_L,J_ - mn , n+j_> . for

example, for a system of four equations in four unknowns one may choose the

linear bloc, Al - A20, or the two dimensional array Al.l - AU,5. In either

ca.se, one mus u DS cunaisuenu wiien wri i^xng i^ne rjivj_rjn a ua,oeuien u wnxun reiers LU

the given elements. The ENTER statement has the general form

T-nvTTnTTr-\ / n -RT r-\ \ 11 \ _ _ \ /t \ TN caving^D.a.Hi. JH. jri ju jv

vhere:

S.N.E. is simply an abbreviation for Solve Normal Equations;

A is the name of the first eiven element, fa..):
' * 11"

n is an integer (or name of an integer) which specifies the number of

unknowns j

C is optional and if specified is the name where the result of the first

unknown is to be recorded, i.e., generally the name XI where the

solution is to be recorded. The successive results are recorded in

consecutive spaces in internal storage. The identical results are

available elsewhere, these are explained below.

D is the name of the determinant of A This name is optional, and if

specified, the value of the determinant of A is calculated and recorded

at the place called D.

In the process of obtalirfnic t.hp Rnln+.lnn. +.h<=> omrmutpr dfst.T'Ovs thp ffiveri

A ana a. in particular, x-ne original A is repiacea Dy "one inverse 01 A, ana

B is replaced by the solution, X, which satisfies the given system. Hence one

need not specify C since one can make references to the solution by referring

to the names of the original B's. However, if one wants to specify D and not

C then the ENTER statement must be written in the form

TTMIIII.TI 1 /*-1 TIT T7I \ A \ \\-TN
OiVXCitl I D • H • £i •)M-JL1}}U

m^ A i lue+^Q+o uo nVinc;^ +,hp> .qimnl P Rvstpm of Tnwr pnuati ons i n fnur unknowns
j_^, J__I__I_»^UI_.J.I_*I_<V-^ n_ V-ü w_ w w^-w _ ——x"— ~ ~a ~ — —a. — — "

wixn solution AI = x, Kd = d, K? - o, At = t.

GIVEN:

XI + X2 + X3 +

XI + 2X2 + X3 +

XI + X2 +3X3 +

Al "t- Kd -t AJ? -I- 4A4 = dd

A4 = 1U

Xk = 12

Xh = 16

131

Determine, identify and print the Xl,X2,Xj5 and Xh which satisfy

the above equations.

Note that the given elements in the prescribed order by rows are:

To reserve space in internal storage for the given elements and the

solution, we write a BLOC statement

BL0C(A1,1 - AU,s)Xl - Xh)

To record the given elements in the reserved space we use the convenient DEC

first element by writinCT Al-1 in the LOCATION

space.

Al,l DEC (l)l)l)l)lO)l)2)l)l)l2)l)l)3)l)l6)l)l)l)U)22

The BLOC statement above provides for reserving the consecutive space for the

given elements and solution. The "Al,l DEC" provides for recording the given

system in internal storage in the reserved space. The flow chart for this

example is Riven below.

T?TVTrpTro / Q TVT X? ^
I

i
i
i

U±M -L -LUIA ^ L-J • 1* • ±-J . J

A

B

FLOW CHART - EXAMPLE 17

FIGURE $h.

1 -zo

nally in the prescribed order. This is indicated on the flow chart just prior

to START with the box containing A and B appended with a broken line. Note

a T c r-v +Vta+ T.T___ T.T-i T 1 Vi-v»-ivi+ an/1 T ^an+-i fir + Vi d r-r\l II+T nn + T.T-I /'-c^ TH-I -i c -T c r\ riv-10 + r\ aj.QiJ OllCJ. U «^ VY _L._I__I_ _jjj. _Li.lL- OllllJ. _L.<_J.^_;j._, I. _l_ _L V OllC O W_l_ U. UJ.U1L UHiUC » 111XD _l_ O V-AW-l-lCT <_*W

emphasize that if one specifies a place for the solution (as we do in our

program) then the solution results are available in two places. The two

Tints correspond to the solution references in the two distinct i~>laces. The

program and output for this example are listed in FIGURE 35-

133

23 JULY,63 PAGE 1
PFtOEl C906 ROMANELLI C.L. 45107 EXAMPLE 17 1

BLOC (A1,1-A4,5)X1-X4 2

START ENTER<S.N.E.)Al,l)4)Xi;>DA 3

PRINT-F0RMATIK)-<X1 = >Xl< X2 = >X2< X3 = >X3 4

CONT< X4 = >X4< DET A ~ >DA* ENTER!PRINT B) 5

PRINT-F0RMAT{K)-<X1 = >AL,5< X2 = >A2,5< X3 = >A3,5 6

C0NT< X4 = >A4,5< DET A = >DA% GOTO«N.PROB) 7

K FORM I 12-2-4)1-4)12-3-6)2 8

AI,1 DEC (1)1)1)1)10)1)2)1)1)12)1)1)3)1)16)1)1)1)4)22 9

END GOTO I START) 10

MAY-23,63 BRLESC FORAST F62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 17 »

XI == 1. X2 = 2. X3 = 3. X4 = 4. DET A = 6.0

XI = 1. X2 = 2. X3 = 3. X4 = 4. DET A = 6.0

FIGURE 35.

EXAMPLE l8.

In this example we will illustrate another means of obtaining the solution

to the -Problem of EXAMPLE If, Since the A matrix (the coefficient matrix) is

symmetric, less storage space is required and computation time is proportionally-

diminished. For low order systems, the space and time savings may not be

appreciable: however, for high order systems, both space and time savings mav

be appreciable.

Similar to the General case - the symmetric case also requires that the

given elements be recorded internally in consecutive spaces by rows. In parti-

cular the required order is as follows:

a,, ,a, ^, . . . ,a, ,b, ,a„^,a„, a„ ,b„ b , .a .b
xx' xd' • xn' X' dd' dy ' dx\' d' ' n-1' nn' n

The symmetry condition is specified in both the BLOC statement and the ENTER

statement as follows:

BL0C(A1,1 - AU,5/SY.)X1 - Xk

ENTER(SX.SNEjAl,1)h)X1)D

Again, as in the general case, in obtaining the solution, the original A matrix

is replaced by the inverse of A: however, the solution is recorded only in the

specified place XI, and is not recorded in the space previously occupied by the

augmented vector as in the general S.N.E. The flow chart for this symmetric

case is similar to that of the general case.

i 7r
J-9P

bTÄKT

ENTER(SY.SNE)

A

B

FLOW CHART FOR EXAMPLE 18.

FIGURE 36.

The program and results for this example are listed in FIGURE 37•

h-1

2 3 JULY,63 PAGE 1
PROB C906 M.J.ROMANELLI 45107 EXAMPLE 18 1

BLOC (A1,1-A4,5/SY„)Xl-X4 2

START ENTER(SY.SNE)A1,1)4)X1)D 3

PRINT-FORMAT I K)-<Xl == >X1< X2 = >X2< X3 = >X3 4

CONT< X4 = >X4< DET A = >D% GOTO(N.PROB) 5

K FORM(L2-2-4)I-*)12-3-6)2 6

Al,l DEC (1)1)1)1)10)2)1.11)12)3)1)16)4)22) 7

END GOTO(START) 8

MAY.23,63 BRLESC FORAST F62

PROB C906 M. J.ROMANELLI 4i>107 EXAMPLE 18 »

XI = 1. X2 = 2. X3 = 3. X4 = 4. DET A = 6.0

FIGURE 57-

T^YAMPT.TT 1 Q

This example illustrates the ENTER statement which applies Simpson's rule

to approximate the definite integral

) f(x)dx .
^ A

The statement has the general form

TP-Mm-inD (a Ti\Fmr^'E^Y'\'Ery'\T \h \v,"\V.

where;

S.INTE is an abbreviation for Simpson integration;

F is the location name where the integrand f(x) is explicitly

defined;

Since the process is designed to provide the approximation for

arbitrary f(x), it is the responsibility of the programmer to

define the f^xy of interest. Further, the statement or state-

ments which define f(x) must be terminated with GOTO(S.I.FF).

This enables the computer to evaluate and weight the integrand

as many times as is necessary.

FX is the na^p Q"f t.hp -intperrand . ffx):

I is the name of the resulting approximation;

A is the name of the lower limit, B the upper limit;

E is the name of a "relative error bound;

The program is designed to obtain the approximation with a minimum number

of evaluations of the integrand* Successive approximations are obtained using

successively smaller AX until

I(AX) - I(=|)

I(AX)
<- iL

15«

nr nn+.n "I

B - A

2

> 1025.

When the latter occurs,, a "run error" print includes the numerical value of

7AV^ -rf£X.\ -V"<W - -"-V-gV

I(AX;

(For approximations which tend to zero, defining the original integral as a

sum of intecrals mav suffice to nroduce a satisfactory- aTDr>roximation^.

A ,_\ (dx
4 N

dx

-/ u x -i- X

REQUIRED:

Use Simpsuii Method uf Numerical Integration to obtain approximations

for:

\JA\d.) wixn an associatea & = .uuux ;

ä " " " E = .0001 ;

* ii n •• E = .000001 :

xpy

START

A = 0

B = 1

e = .0001

Enter Simpson

Integration

Print

In 2 =

e =

Enter Simpson

Integration

Print

It =

t =

^

i if 1

I
1

* 0

1
i

f EVINGD THIRD'

-r(-) 1 Pf -- 1 — . e = .000001 •KAJ - p

"'*-"-' l + X ± + X

D
1

Print

jt =

e =

«•- - Enter

Integration

A,T m„ fr\r,i -1" > / IN . rnuß

V J
i _^ ±\y) -
H i + y

>«. -^ '

f

vUJW utiHKT run CiAHivirixti ±y.

FIGURE 38=

Note the "broken lines" to the evaluation of the integrands and the "solid" line

from the evaluation back to the Simpson integration. We used the "broken lines"

because the programmer does not write an explicit statement which says GOTO(EVINGD) .

Recall that we specify this connection in the ENTER statement.

llK)

we used the sona line returning rrom xne evaluation since zne programmer

does write GOTO(S.I.FF).

Note the solid lines from the "integration boxes" to the "print boxes"

which are used to indicate that the computers go to the statement immediately

f n"l "1 nui ncr +.Vi<= KIMTKH 5t.flt.pmpnt aft.pr +.Vi<= KNTKK 5t.at.pmpnt. i c; r-nmnlptpl v pYp^n+prl

Hence, evaluation of an integrand associated with an ENTER statement should

not immediately follow the ENTER statement.

The program and output for this example are listed in FIGURE 39«

HU

23 JULY,63 PAGE 1
PROB C906 M. J.ROMANELLI 45107 EXAMPLE 19 1

START A=0% B=IX EPS=.0001 2

ENTER (S. 1NTE) EVI NGD) X) FOIFX) LN2) A) B) EPS 3

PRINT<LN(2) = >LN2 < EPS = >EPS* GOTO(SECOND) 4

EVINGD F0FX = L/(1 + X)S GOTO IS, I .FIF) 5

SECOND ENTER(S.INTE)C)X»F)PI)A)BJEPS 6

PI=4»PI* PRIMT< PI = >PI< EPS = >fcPS% GOTO(THIRO) 7

C F=1/(1+X»X)« GOTO(S.I.FF) 8

THIRD Z=.000001« ENTER(S.INTE)D)Y)H)K)A)B)Z 9

K=4*KS PRIMT< PI = >K< EPS - >Z% GOTO IN.PROB) 10

D H=l/(l + Y*YU GOTO(S.I.FF) 11

END GOTO I START) 12

MAY.23,63 BRLESC FORAST F62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 19 *

LN(2) = 69314765 EPS = 10000000-03 0000001

PI = 31415925 1 EPS = 10000000-03 0000002

PI = 31415927 1 EPS = 10000000-05 0000003

FIGURE 39-

This example illustrates how the ENTER statement is used to obtain a

numerical solution of a system of first—order ordinary differential eouations

-^ = y[= fi(t,y1(t), y2(t),...,yn(t))

yi(to) = yio ' i = °A,2,...,II .

iiic iiuii5C-".uoya-yj.j.j. mc uiiuu 10 a,jjjjj.xcu. uu uuoaj.il a.j.1 aijjjx UAllJiauc bUJ-UUHJIl. XI1C

statement has the general form:

ENTER(R.K.G) At)n)EVDS)Y)Y')Q

where:

-: « «~ ^-u-u«„,,4 ~ 4- 4 «~ 4> T> V-.4-4— /-* J n n - lb a.ii auureviauiun lur nuiigfcf-ivuo ua. uiJ~Lj

At is the name of the incremental value of the independent variablej

The numerical solution is determined at discrete values of the

independent variable, t. i.e., when initial conditions are

specified corresponding to t = t , the solution. v.(t). is
o' ' vl' ''

determined at t = t + At. The computer replaces the given

values, y.(t), with the new values, y.(t + At). These new

•values then serve as the given values for determining the

solution at the "next" discrete t, namely at t + 2At. Each
' o

subsequent entry produces the solution at the next t;

n is an integer (or name of an integer) which specifies the number

of equations in the system, i.e.,n=W+l;

rPK^ m^4-"U^,3 wnn,in' -w^ r* r, " « ~ « ~ 4-"U " ~ ~ , , ~ 4- 4 me ine oiiuu 1C4UÜCÜ a. Lei u Uli e^ud uiuu

y O " dt = ±

which is treated in the same manner as the other equations.

llj-3

This provides for adjusting the value of the independent

variable as required by the method.

EVDS is the name of the location where the derivatives are extilicitlv

defined;

Similar to the Simpson integration of the previous example, this

Q+.a+f=m<='r|'t' i's rlppj-iaripd -fnr arhitrarv f. . hence, aeain it is the

responsibility or tne programmer xo wrixe tne sxaxemenxs «men

evaluate the f. of interest. These statements must be designed

to record the evaluated derivatives in consecutive places called

Y'. Further, this sequence of statements must be terminated With

GOTO(R.K.GD). Specifying the name EVDS in the ENTER statement and

terminating this evaluation of the derivatives with GOTO(R.K.GD)

enables the computer to evaluate and weight the derivatives as many

times as required by the method.

Y is the name of the first of the N+l functional values (or equiva-

lently, the name of the "zeroth" functional value);

To avoid confusion in (n) and (N+l) and the inclusion of the in-

dependent variable as one of the (N+l) functional values and deri-

vatives it is suggested that the system be considered and identi-

fied as follows:

dy
dt

__ t
y = ±

dyx

dt *i •fl

dv_
~"2.
dt y^

• d.
= tn

ay
-IE = -• = *•
dt Jn "r

Ihk

To identify and reserve space for the required quantities it is suggested

that the programmer use the following or equivalent BLOC statement

•RT.rWY _ Y n YV» . Y' n\0 . 0 til

As stated above, Y is the name of the first of the (N+l) consecutive functional

values. These correspond to the names of the given conditions and correspond-

ingly to the names where the resulting values will he recorded.

v* T_C +v^e name of the first of the .+1' consecutive derivative values*

It is in these places that the EVDS statements instruct the computer

to record the derivative values. As identified above, y1 = 1

dt
corresponds to — = 1.

Q is the name of the first of (N+l) quantities that are required for

intermediate values in the computations.

For subsequent steps, i.e., for solutions at t + kAt where k = 1,2,3>•••,

etc., it is not necessary to re-s""">ecifv the "narameters as in the original ESTER

statement. Indeed, for subsequent steps one need only write GOTO(R.K.Gl).

P,T-UT5TW-

dy
dt J J } 0

= ... = .J «^ — __ 4- „„A «4- 4. _ 4- — ri — ,y — x wucxc ,y = o, anu. a o u — o = v^

dy.
44 = y* = (a/b)y„(t) y(t_) = 0

dy?

ST = YU = (-b/a)yn(t) yn(tj = 0
U. L. " C • - X - X U

dv_
j£ = y^= (d)y3(t) y2(tQ) = b

y5(t0) = c

where a, b, c, and d are constants

lk-5

h, a = rur a. = c, u = j, C = H- ,

Determine, print (and identify)

y, y1(t), yg(t), y3(t) for t = 0, .1, .2, .. , 1.0

Use a computation step-size At = .01

The flow chart for this example is given in FIGURE kO below; the program and output in
FIGURE h.

START

C = a/b 1

-b/s

K = ±

A

C

r x J.H u

B =

D =

Print

column heading

Y Yl Y2 Y3

Print

-LUX O-LCLX

Conditions
i = 0

I
V =
" o

0 a = 2

yl =
0 b = 3

y2 = 3 c = h

y^ = 1+ d = -l

At = 01

(N.PR0B H 1S^

<^ "i A n i + 1

INo

No

|y-l|<.001?

Frint "one" line

y> y±> y2> y$

ENTER(R.K.G)

Obtain one step of

solution, i.e.,

y.(t. + At)
•V i

i = 0,1,2,3

—I 1—
1
i.
T UVI •••'

yi = (Ci)y2

^2
= (C2)yi

• 5
= (cOv,

• - 5

FLOW CHART FOR EXAMPLE 20.

FIGURE kO.

1U6

This example is given to illustrate addition, subtraction, multiplication

and inversion of matrices. We use ENTER statements for multiplication and

inversion whereas we use general formulas and COUNT statements for addition

and subtraction. The illustrations given in this example do not include

permissible options such as: references to symmetric matrices; references to

the transpose of a matrix; references to internally stored matrices whose

elements are uniformly spaced different from unity; or "accummulative multi-

plication 1:6,: & dding the matrix C to the product matrix AB and recording
 -C» the resurc a.z u. For ease in relerence, it is convenient zo laenxny matrices

as two dimensional arrays. This is readily achieved through the use of BLOC

statements,

GIVEN:

REQUIRED:

A. B and C. where:

A is a (2x2) matrix;

B is a (2x2) matrix;
n.j_ „ / o x\ T* «-, + -*.-; v

Print and identify the following matrices:

1. A 6. D = B x C

2. B 7. E = D + C

-7 C Q TT A 1 A "I \ n = t\ — \t\ j

-1

(A"1)
-1

I = A A

The flow chart for this example is given in FIGURE k-2.

The program, input and output are listed in FIGURE k^.

lql

MAY.23*63 BRLESC FORAST F62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 21

H

TA = -30000000 1 OETA« = - 3 33 3 3333 0000001

A MATRIX B MATRIX C MATRIX 0000002

1.0000 2.0000 3.0000 4.0000 7.0000 8.0000 9.0000

2.0000 1.0000 5.0000 6.0000 3.0000 2.0000 I.0000

A INVERSE A INV. INV. D = B*C 0000003

«3333 .6667 1.0000 2.0000 3 3.0000 32.0000 31.0000

«6667 - .3333 2.0000 1.0000 5 3.0000 52.0000 51.0000

IDENTITY NULL E = D+C 0000004

1.0000 - .0000 .0000 - .0000 40.0000 40.0000 40.0000

.0000 1.0000 - .0000 - .0000 56.0000 54.0000 52.0000

FIGURE k5

To form a sum of matrices, (or difference), we write a general equation

using an index, then "by means of an initial setting of the index and an

appropriate COUNT statement, the sum or difference is obtained. As illustrated

on the flow chart and the program, for the sum, E = D + C, we initially set

the index J = 0. The general equation is then expressed as:

SUMMAT E1,1,J = D1,1,J + C1,1,J %

So that J takes on the required integer values, we write

COUNT(6)IN(J)GOTO(SUMMAT)

Note that J was set equal to zero on line h and hence the first evaluation of

the general definition corresponds to summing the first elements of the matrices.

Note also that we set M = 2 and N = 3 on line h. This was done only to

illustrate later references to dimensions by name rather than by explicit in-

tegers.

Next, to obtain the inverse we could have written the appropriate ENTER

statement immediately following line 5. However, as in the case of solving

linear equations, the given matrix is replaced with the resulting inverse.

Hence, since we want the original A matrix for future operations, we move A to

F and retain the original at A. We will instruct the computer to invert F

and hence after the inversion is completed, A" will be recorded at F. To

obtain the inverse of F, we write

where:

ENTER(MAT.INV)F1,1)2)DETA

MAT.INV is an abbreviation for matrix inversion;

Fl.l is the name of the first element of the matrix to be

inverted, (successive element in consecutive spaces by rows);

2 indicates the dimension, i.e., F is a 2x2 matrix;

DETA is optional and when specified as above is the name of the

value of the determinant of the matrix to be inverted.

157

In the next examples, several methods for determining approximations to

roous 0J. continui

a "bisection" method.

GIVEN:

f(X) = X" - X - 1 ;

r „„^ v v canu. /vn
O

REQUIRED:

£ such that f(XQ)f(X1) < 0 •

€ >0

Determine X ,X ,X, , . . ,X , such that |f(X.)|<e ;

Print and identify, X. and f(X) for i = 0,1,2,...,J.

In the bisection method, the "next" approximation for the root is defined

X + X
x = -2 £

2

where f(X) < 0 and f(X) > 0. The function is evaluated for this mean X
n p

and a test is applied to determine if the magnitude of the function is less

than the given e. If the magnitude is less than e, X is the desired root. If

the magnitude is not less than e, then the interval in which the root lies is

diminished by replacing X or X by X. We replace X by X if f(X) < 0, or

X bv X i"f T(Y} > 0. The next mean X is determined and the process continued. ^p J

The flow chart for this example is given in FIGURE kk.

159

Since the process will require an indefinite number of evaluations of

the function, we wrote the general definition for arbitrary X and terminated

the general definition and printing of X and f(X) with a "variable" exit, E.

Prior to each entrance to the evaluation, we establish values for the arbi-

trary X and the variable exit, E.

The function is first evaluated for X = X with exit E = 1. At 1. we

record f = f(X) and establish either X or X depending on whether f\Xi o o p n o
was positive or negative.

The function is next evaluated for X = X with exit E = k. At 4. we

record fn = f(Xn) and establish either X or X , again depending on whether
_L -L. P

f(X) was positive or negative.

At 6. the exit E is set equal to 7. for all future exits from the general

function evaluation. Next we apply a test to determine if the initial con-

dition is satisfied; i.e., if f (X^)f (X.,) < 0. If the condition is not satis-

fied, this indication is printed and the computer is directed to the next pro-

blem. If the initial condition is satisfied, the initial X and X required ' n p
for the general process are established and recorded. Hence, we direct the

computer to the definition of the mean X and initiate the general process.

The program and results for this example are listed in FIGURE V>. Note

that this program may be modified for other f(X) and corresponding initial

conditions by replacing cards 3 and ly accordingly.

1U1

MAY.23,63 BKLIESC FORAST F62

PROB C906 M.J.KOMANELLI *5107 EXAMPLE 22

FIX) 0000001

1.0000000 1- 10000000 l

20000000 1 50000000 1

15000000 1 87500000

1.2 500000 1- -29687500

13 750000 1 22*60938

13125000 1- •51513672- -01

13*37500 1 8261108*- 01

132812 50 1 1*575958- -01

H 13203125 1- -18710613- -01
\Ji 132*2187 1- -21279*5*- -02

13261719 1 62088296- -02

13251953 1 20366507- -02

132*7070 1- -*659*883- -0*

132*9512 1 99*79097- -03

132*8291 1 *7*03882- -03

132*7681 1 21370716- -03

132*7375 1 83552*38- -0*

132*7223 I 18*77852- -0*

132*71*7 1- -1*0587*7- -0*

132*7185 1 2209*9*8- -05

0000002

0000003

000000*

0000005

0000006

0000007

0000008

0000009

0000010

0000011

0000012

0000013

000001*

0000015

0000016

0000017

0000018

0000019

0000020

00000 21

FIGURE 1*5,

-^»^«^•n I. /*
The flow chart for this example is given in .fiuuKt; 4ö

ÖTAKT

PRINT HEADER

X F(X) — — \~~*

riuiu' ßjjHi^ri.

X = X

üiV-f'

->j f (X) = X* - X - 1

PRINT: X : f(x)
•pi tv\ _ w^ _ n

X = X
f(x)
-PI fYl

> f < e

NO

A
^WN.PROB)

J?'±JUW UftAKT FUK £iÄAiyLt'ijC £;>.

FIGURE 46.

The program and results are listed in FIGURE hj. Note that this program

may be modified for other f(x) by replacing cards 3 and 5 accordingly. Note

also, this process may not converge, indeed, it may diverge if f'(X) tends to

zero.

165

TTT7- A **r-»T TT1 l~\\.

This example illustrates the "Regula-Falsi" method for obtaining an

jxlmätlon for a real root of a function, 1

next approximation for the root is defined by:

a.ppi'U.x._i_HicA uiuii lur a leai iuuo ui a ± UIIL; oxun, x \-n-j — w • -1-11 011x0 Lie onuu, one

_ \ V 1_J-1 u -c» / v \ r\ a.) A , bUCIl L.na.1, 11A ; -^ w 7 n' n

b.) X , such that f(X) > 0 :
' p' P

c) f(Xn)

a.; IAA ;

In general, the new approximation,

GIVEN:

REQUIRED:

X f(X) - X f(X)
v n P P n
x f(X) - f(X)

• p' • n'

A ana A., sucn xnax. IIA ; IIA, J -^ V, IIAI = A - A - X, ana e -> u
o 1 v o 1

Determine X such that f^X; < e. Print and identify each X and

corresponding f(X)

The flow chart for this example is given in FIGURE hd. Note the similarity

to the bisection method flow-chart. The ""ro^ram and results are listed in

FIGURE U9.

167

MAY.23t63 BRLESC FORAST F62

PKOB C906 M.J.rtOMANELLI 45107 EXAMPLE 24

F(X) 0000001

H
H

10000000

20000000

11666667

12 5 3112 0

12934374

13U281U

13189885

13222827

13236843

13242795

13245320

13246391

13246645

13247038

13247119

13247154

13247169

I-10000000 I

1 50000000 1

1-5 7 8703 70

1-28536303

1-12954^09

1-56588487-01

1-24303747-01

1-10361850-01

1-44039499-02

1-18692584-02

1-79295919-03

1-33630103-03

1-14261375-03

1-60474995-04

1-25643 798-04

1-10873904-04

1-46109160-05

0000002

0000003

0000004

0000005

0000006

0000007

0000008

0000009

0000010

0000011

0000012

0OO0Ü13

0000014

0000015

0000016

0000017

0000018

FIGURE k9.

KXÄMFLE 25.

This example illustrates a "constant secant" method for approximating a

real root of a function, f(X) = 0. Again we assume that X and X are given

such that

f(X) f(X,) < 0. v o x 1'

The slope

f(Xj - f(X_)
x u m = Y _ Y
1 O

is computed and the "next" approximation to the root is defined similar to the

Newton-Raphson method, i.e.,

„/-„• \ HA. j
X. ._ = X. -
l+l 1 m

GIVEN:

f(X) = X5 - X - 1

X and Xn such that f(X) f(X,) < 0 ; e > 0.
Ox Ox

REQUIRED:

Determine X ,X ,X, ,...,X., such that |f(X.)| < e ;
<- J f J J

Print and identify X. and f(X.), i < 0,1,2,...,j .

rFV.Ci -PI /-\T.T^ r>\-m-v* + -P^-y^ +Vn'r WQ + VIA/^ TO r-lnAtm n r-> TPTflTTDT? CH rpv-, Q •^•y.Arwnm onrl AH+TMI +

obtained are listed in FIGURE 51.

172

START EVF 1. 2.

X := 1
0

x - ? XI c-

e = .00001

Print Header

Print Blank

X =

E :

= X
0

= 1.

f U) --- x3 - - x - 1 —0 f = -- f f f < 0 9 No
1 i Print:

x, f(x)

o

X = X

E = 2.

o

Yes

i

i

Print

CONDITIONS

NOT

SATISFIED

r

3. H
—]

k. '
VM

x - X - f
m

No
|f | < e ?

xl '

E = h.

- f
o

- X
o

' f

f N.PROB
Yes

•r

N.PROB

FLOW CHART FOR EXAMPLE 25.

FIGURE 50.

23 JULY,63 PAGE 1
PROB C906 M.J.RUMANELLI 45107 EXAMPLE 25 1

START X0=1 % Xl = 2 * EPS».00001 2

PRINT< X F(X)> % ENTEMPR1NT BU X = XOX SET(E=1.) 3

EVE F = X**3-X-1 * PRIIMT(X)F % GOTO(,E) 4

1. F0=F%X=Xl?SEr(E=2.)G0T01EVF) 5

2. IF(F*F0<O)G0TO(3.)*PRINT<CONDlTIONS NOT SATISFIED>?G0T0(N.PROB)% 6

3. M=(F-FO)/{X-XO) % SET(E=4.) 7

4. IF-AUS(F<EPS)GOTO(N.PROB)Z X=X-F/M* GOTO(EVF) 8

END GOTO(START) 9

MAY.23,63 BRLESC FORAST F62

PROB C906 M.J.RUMANELLI 45107 EXAMPLE 25 *

F (X) 0000001

H

4=- 10000000

20000000

11666667

12631173

13044269

13185 779

13229171

13241950

13245665

13246741

13247053

1324 714 3

13247169

1-10000000 1

I 50000000 1

1-57870370

1-24785752

1-84906 120-01

l-2603t>534-01

1-76669149-02

1-22292803-02

1-64576564-03

1-18685691-03

1-54051212-04

1-1563 3 700-04

1-45217501-05
FIGURE 51.

0000002

0000003

0000004

0000005

0000006

0000007

0000008

0000009

0000010

0000011

0000012

0000013

0000014

This example illustrates another iterative method for determining an

approximation to a real root of a function f\X/ = 0. Here it is assumed that

f(X) = 0 can he expressed in an equivalent form

X = F(X)

The general iteration is then expressed in the form

X.+1 = F(X.)

where we assume an initial X = X is given to start the iteration.
o

GIVEN:

I^AJ = A - A - X I

X
o

e > 0

REQUIRED:

Use the iteration, X.^n = (X. + l) to determine X., such that
' l+l l j

|f(Xj) | <e.

Print and identify X. and f(X), i = 0,1,2,...,j.

The flow-chart for this example is given in FIGURE 52.

175

START

PRINT HEADER X, F(X)

PRINT BLANK

X = 1

C = 1/3

e = .00001

EVP

f (x) = yp- x - :
PRINT

X ; f(x).

J |f(X)|<e ?

No Yes

V

Jf'I/ÜW UMAKT ifUH JUXJWrhiS d!o

•CTnTTRTT CQ 1 J.UU1UJ y c_ a

The program and output obtained are listed in FIGURE 53.

176

23 JULY,63 PAGE 1
PROB C906 M„J.ROMANELLI 45107 EXAMPLE 26 1

START PRINK X F(X)>XENTER(PRINT B)I X=U C=l/3* EPS=.00001 2

EVF F=X»*3-X-1*PR1NT(X)F*1F-ABS«F<EPS)GOTO(N.PROB) 3

X=(X+1)*»C « GOTO(EVF) 4

END G0TO(START) 5

MAY.23 »63 BRLESC FORAST IF62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 26 *

X F(X) 0000001

0000002

0000003

0000004

0000005

0000006

0000007

0000008

0000009

0000010

10000000 1- -10000000 1

H 12599210 1- -2 5992105
-3

13122938 1- -52 372787- -01

13223538 1- -10059982- -01

13242687 1- -191.49254- -02

13246326 1- -36388070- -03

13247017 l- -691.23259- -04

13247149 1- -13 1.29931- -04

13247174 1- -24939947- -05

FIGURE 53-

This example illustrates a "least-squares" method for "fitting" a

-»-*/-\ T t f-v-i r-\T« T n 1 •*" r-\ I-T-I T r/-i vi -4- ri I-o i I r~, -in n n 4-ri A 1 4-Vi/~in rfVi "4" V» J~\ "V»/"\ ri •v*/—. nn ^-» l/-r-i rr/~\ /^ -i-i-fc-* ,-~\ i-*-k->ri m /•> ^"-'j-^yin-'iiixcxj- U*-J given L-CI UU_LCLX U-CI OCL • ri_i_ onvju.^11 oncic CLJ. C pa.k_i\.a,g,c*~4. px ^£>J- cuuo

available for this purpose} this and the next two examples are given to

illustrate how the ENTER statement is used to generate the normal equations

•yon n-T -yoi^ fny 1 oQc+_crm*a T»O a cnln+innc Tri n 1 liic -f- r»a +- .=1 T.ro r>nnci f^or +.V10 *FJ~I~! 1 rwj-

ing problem:

GIVEN:

X., y(Xi) for i = 1,2,3,

REQUIRED:

Assume this data on cards in standard form, one pair per card.

Since an indefinite number of pairs are given, we will terminate

this data with two blank cards.

Determine, print and identify- C , C-, and G- such that

S =y~ (y(Xn.) -y(X.))
2 i s a minimum,

where

y(X.) = C, + CJC. + C,X.2 .
" " 1" -L d. 1 Ol

The necessary conditions for a minimum are:

öS _ n _ \~ V°P * V" v^ * V" v2p _ ^ „t
dc ~ £__ "iwl ' / "i~2 • / "i"3 ^i.

^q ^ <\— 9 ^— * X— . .

3c2
= ° = Z_ xici+ Z_ xic2+ 2_ xic3 - Z_ xiy(xi}

i i i i

J.JU

£§. = 0 = N y n + \ Y^n + N Y^n _ ^^ y-irfY
Be. X "iwl ' ^/_ "i"2 ' X I '3 ^/" "iJ x"i'

To obtain the solution, we must generate and solve the above system of

linear equations in the three unknowns, C, , C , and C,. Note that the matrix

uf cuefficieiiot) o± one UaiKnowns is sj/wmetricj i.e.,

/ V~vO "\~vl
/ ? "*• > "i

V A

A =
V V V
> X. ^ X<7 > X? z _1 ^ 1 ^ 1

Note also that the system to be generated and solved is of the form illustrated

in EXAMPLE l8, i.e., of the form

an - -h

where:

A is svmmetric

C is the unknown vector, C , C , C_ ;

179

b =

/_ \
/ \ y. \

1

> x. y.
/L.

\ ST X2v /

Hence, the following elements must be generated and recorded internally in

consecutive spaces by rows.

> xV
"1

x1

i
x2

i >
/

y.-

\
>
/

"1

>

v2
l

v3
i

V
i

~iJi
\
/

i i

X^
i

\ Y2 X v
i"i

\

li^^Ti TI i.n ^

TO generaxe zne aoove, zne JMJKAöT language mcj.ua.es a convenient ümüin state-

ment of the form

ENTER(F-N.E.Ul.l"inIPllW <t>

l8o

F.N.E. is an abbreviation for, "Form Normal Equations" ;

Al,l is the name of the first element in the first row of the

symmetric system to be generated;

(space should be reserved for this system with a BLOC

statement)

n is an integer (or name of an integer) which specifies the

number of equations in the system to be generated;

(for our example, n = 5)

P is the name of the first of (n+l) consecutive elements, in

particular,

General form, For our example,

3c:

6C2

(x.,y.)

(X.,y.J

= S-

n+± = v.

13 _ i
xl _ "

P = X
"2 "i

p
p, = xr 5 i

Pi, -y±

löi

^Ä.jj.y, ugnu oe 0 c v a.j_*j.a 1/j.uu *J_L one pcxx UXCX_L UCI ivanvc

at (X.,y.) ; (again, space should be reserved for these (n+l) quantities with

a BLOC statement).

W is optional and if specified is the name of a weight value to

be applied in the sums, if unspecified, the weight value is

OCHV^ii CLÖ ULL1-L <JJ »

Corresponding to a given point, \X.,y\X.), we instruct the computer to

compute and record the (n+l) quantities at P , P„, ... , P . Then, the

above ENTER statement tells the computer to make the necessary contributions

oO unS sums in one noxma_L equations. «"UlCll CL_L_L pVJlllOD liavC UCC11 p.L W V-*3 O O *3 ^ Hi

this manner, we instruct the computer to solve the symmetric system generated

through the use of the ENTER statement

ENTER(SY.SNE)Al,l)3)Cl #

1Ö2

J-IIC ÜU±UI;1U11 -Lö OllCli CX VCLJ-_LCXU_LC X Ul pi Xii l^llig WJ. X \-fX CLilj O UUOC^UCll O U.O*^

desired.

The flow-chart for this example is given in FIGURE 5^.

omADm
PFIFFT

Clear the augmented

symmetric A matrix area
„ „ t „-1 i > _ n j.. e . t>e 0 axi. >^^ = w

Read:

x. y
^ 1 -4-1 ~-,..w,T « J , V, one numue-i.

of quantities
read)

•^ r\r\

Yes
,i = 0 ? i , "

*>

1MU

V

Enter (F.N.E) i.e..

Contribute to sums

in normal equations

pl =

P2 =

P, =

= 1

= X

- X^

= y

5

l W.PPDP,]

T
Print, nnr^ Tr^on-h-i fSr ... *.*»*,, — 1.1^ 4.^..»^,,.

CI = — C2 =• C3 = —

s ffnl vo +V10 cnrmTYlo+"•y n r> c\rc+om

< •

obtain Cl, Cd, U3

FLOW CHART FOR EXAMPLE 2J.

FIGURE 3h.

The program, input data and results obtained for this example are listed in

FIGURE 55.

23 JULY,63 PAGE I
PROB C906 M.J.ROMANELLI 4b107 EXAMPLE 2 7 i

BL0UA1,1-A3,4/SY.)PI-PA)Cl-C3) 2

START CLEAR(9)iMüS.AT{Al„ i)% 3

REAUPT RbAD(X)Y$ I F-1 NT(09 = 0)GO TO(SOL•N) 4

Pl = l« P2 = X% P3=X»XS P4 = Y2 5

ENTER(F.i^.E.)Al,l)3)PL'i GOTO(REAOPT) 6

SOL'IM ENTER(SY.SNc)Al, 1) 3)C1* 7

PRINT<CI = >C1< C2 = >C2< C3 = >C3X GOTO(N.PROB) 8

END GOTO(STAKT) 9

Ü..0 3.0000

.1 2.98 50

»2 2.9402

.3 2.8660

.4 2.7632

„5 2.6 32 7

£ ..6 2.4760

,7 2.2 94 5

.8 2.0901

,9 1.864 3

i.O 1.6209

MAY.23,63 BRLESC. FORAST F62

PROB C906 M.J.RUMANELLI 45107 EXAMPLE 27 •

Cl = 30077021 1 C2 = -10693520 C3 = -12891375 1 0000001

FIGURE 55.

H
CO

TTVAMDTT OA

In the previous example we obtained a "polynomial" fit to some tabular

data. In this example we will include a commutation and Tint-in^ of the

"residuals"; i.e., the difference between the given functional value and the

approximating functional value at each point. We will also compute and print

the "root mean-square" error.

First, since we need the given functional values to compute residuals,

we will have to make these functional values available after the solution for

the approximating function is obtained. (Recall that we discarded the data

points as soon as their contribution to the normal equations was completed).

Hence, to make the given data available for residual computations, we will

first read and record all of the given data and retain it internally for as

many future references as desired.

To provide for a maximum of say 500 points, we will reserve space for

1000 values of given data, hence we will use a BLOC statement

BL0C(D1 - DIOOO).

Further since onl""" two data values are recorded ^er card- we will s^ecif^ a

format which departs from standard and indicates the desired departure.

The READ statement to accomplish the reading and recording of a maximum

of 1000 values, two per card has the form

RTTAn-TrnRMATVTr/cO_f i nnnlwr« AaVrn ^

where the format F which specifies the particular form desired is:

F FORM (10-12)10-12) 2 $

185

iU J.U.fcflib.L-i-y cillU. Ituex uu bile given A ö aiiu. x ö wc ucm wxxuc a blij Soalcuicul

of the form

DIl^VA-L = JJX^IX = uc; -p

Hence, to refer to the given data we may refer to the X's, Y's or D's hearing

in mind that the X's are two units apart in internal storage, and likewise,

the Y's are two units apart in internal storage.

The flow chart for this example is given in FIGURE 56.

186

H
CD
-3

START

Clear the augmented

symmetric A matrix area

i.e., set all ^ 0'

RESID JL
y.., = c. + cjc.., + c,x?_
l+l 1 2 l+l 3 i+l

fi+l yi+l " yi+l

+1

*_
Print:

Xi+1' yi+l; yi+l; ri+l

i = i + 2

Read given data

x., y.

i = 1,2,...,J

j < 500

2J--*09

i = 0

S = 0

i = 0

PRINT Blank

Print HEADING

X Y YEAR R

PRINT Blank

PRINT & IDENTIFY

Cl = C2 = C3 =

Solve System; obtain

P P P L'l ' L'2 ' U3

X = XI,i

y = Yi,i

P2 = X

P), = y

Contribute to

Normal Equations

=i + 2

,No - i < 2J ? Yes

JfesJ i < 2J No RMS = S/J PRINT: RMS = ml N.PROB J

FLOW CHART FOR EXAMPLE 28.

FIGURE 56.

CO
03

23 JULY,63 PAGE 1
PROB C906 M. JI.ROMANELLI 45107 EXAMPLE 28 1

BLOC(Al,1-A3,4/S,Y.)P1--P4}C1-C3)Dl-D1000 2

SYN (XL=J1)YL=Ü2)2J=09) 3

START CLEAK(9)N0S.AT(A1«LU READ-FORMAT (F/2)-(1000)NOS.AT(Dl)% SETI 1=0) 4

NfcXTPT P1=LS P2 = XUl* P3=P2*P2* P4=Y1,I 5

ENTERIF.U.E.)A1,1)3)P1)* COUNT (2 J/ 2) INI I)GOTO (IMEXTPT) 6

ENTER(SY.SNCJAlfl)3ICll* 7

PRIMT-F0RMAT(F0)-<C1 = >C l< C2 = >C2< C3 = >C3? ENTER(PRINT B» 8

PRINT< X Y YBAR R>? ENTERIPRINT B) 9

SET(1=0)« S=0 10

RfcSID YBAR=C1+X1, KC2+C3»X1, I)% R=YEAR-Y1»U S=S+R*RS 11

PRINT-FORMAT(FU)-(XL,I) Y1,I)YBAR)Rf C0UNH2J/2)IM(I)GOTO(RES ID) 12

ENTER(CVIT0F)O9)N% RMS=SCRT(2*S/N)% ENTERIPRINT B) 13

PRINIT-F0RMAT(F0)-<RKS = >RMS* GOTO (N. PROB) 14

IF FORM(LO-12) 10-12)2 15

IFO FORM (12-4-10) 3-2) 1-4)2 16

ENU GOTO(START) 17

0.0 3.000U

.1 2.98b0

.2 2.9402

.3 2.8660

.4 2.7632

.5 2.632 7

.6 2.4 760

.7 2.2 94 5

.8 2.0901

.9 1.8648

1.0 1.620^

H
00
^O

KAY.23,63 BRLESC IFORAST F62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 28 *

Cl = 3.0077 C2 = - .1069 C3 = - 1.2891

X Y Y8AR R 0000001

.0000 3.0000 3.00 77 „007 7

.1000 2.98 50 2.9841 - „0009

.2000 2.9402 2.9347 - „0055

.3000 2.8660 2.85 96 - .0064

.4000 2.7632 2.75 87 - ,0045

.5000 2.632 7 2.6320 - „0007

.6000 2.4 760 2.4795 .003 5

.7000 2.2945 2.3012 .0067

.8000 2.0901 2.0971 .0070

.9000 1.8648 1.8673 .0025

1.0000 1.6209 1.6116 - .0093

RMS = .0056

FIGURE 57

EXAMPLE 23-.

In the previous example of "least-squares curve-fitting", the approxi-

mating function, (the polynomial), was linear in the unknown coefficients.

This example illustrates least-squares curve-fitting where the approxi-

mating function is non-linear in the unknowns. The method illustrated is

often referred to as the method of "differential corrections". To illustrate

we consiuer the following prouxenn

GIVEN;

x,, y(x,), (i = 1,2,3,...) ;

(Here we will assume the given data is recorded on cards in

standard form with six values per card), Xn, yn, Xg, y0, etc.

A a^d B - initial pst.imat.es of the unknowns A and B in the
o o7

approximating function

REQUIRED:

Determine, print and identify, A and B such that

v.yv,-"-/ - j\•"•£//

where

y(X) = A(BX)

Compute, print and identify resiauals and twis as. in the previous

example.

The necessary conditions required to minimize S with respect to A and B

would lead to a system of equations which is non-linear in the unknowns A and

•R Konr^a TJO firct pv-nnnrl V(V_A."FO in a Ta.vl r>r series about A .B . We obtain

i on

then

y(X,AQ + AA, Bo + AB)« y(X,Ao,BQ) + AA + AB = y(X,M,AB)

an approximating function which is linear in the unknowns, AA and AB. (The

notation I denotes evaluation of the partial derivative at A ,B). Note
Jo o' o

that we have substituted A + M for A, and B + AB for B. The necessary o ' o J

conditions for minimizing

-. p
v(X.) - y(X.)
" ' i' - " i"

with respect to AA and AB are:

ÖS
oÄÄ = 0 = 2 xt m0

<C~
o = 2 y i_i.y •

or equivalently,

•^—•— 'n *—•— 'o o *•—;—
)):

*V fbv dv 1 \ .. . ^ / dv
? ^oA _ 26LJ m + Z V

5B ; ^ts =

u •<_>
m x,) \\by\

^WV'3B|

191

iiuuc ono, o one: auuvc o^ D ucm xn ma ui IA nu oca O-LUii lb KJ± one X UI III

CD = E

where:

C =

^

\ x

the symmetric matrix of coefficients;

.1

Aft

, the unknown vector;

E =

/
">" (y(X.) - y(X.,Ao,Bo))^

X-
\ \ (y(X,) -y(X,,A„,Bj)^

w w uu

ntdL't^ 7 üLö ±11 one jJieV-LUUü eÄcLmp_i_e y we CCLII ubc uic muni\yr . n • iii. / u^ i ui ui one

normal equations by defining:

x~ X

1 -ft = B x
n

1Q?

as i V1
P2 = i,l = ViBo^ =AoXiVBo

•o

P_ = v(X.) - vfX..A .B) = vCX.)-AP. ^ „ x i, „ ^ i' o' o' -"' i' o l

After forming the normal equations we can use the ENTER(SY.SNE) to obtain the

corrections, AA, and AB. We then form

A, = A + AA
1 o

B-, = B + AB
1 o

which serve as "new" estimates for A and B for repeating the entire process.

To terminate this correction process we will test two conditions:

(l.) if both |AA j < e and JAB j<e we will consider the problem solved

and direct the computer to the computation and printing of the

re s i u.us J. s)

(2.) if after 10 corrections, (l.) above is not satisfied, we will assume

that the process is diverging and no residuals will be computed.

In either case, {!•) or \2.), we will repeat the process for different initial

estimates, A and B .
o o

The flow chart for this example is given in FIGURE 58.

The program and results obtained are listed in FIGURE 59-

193

•P"

START NEXTC NEXTIT

Read given data:

X. , y.
1' l

i = 1,2,...,J

2J-*C9

Read: A , B
o' o

Print:

A =._ B =
o o

A = A

B = B

k = 0

Yes
i < 2J •No—» RMS =VS,7J"

i = 1 + 2 RMS
TrinT"

i = 0

Clear the augmented

symmetric A matrix

area. i.e.,

all S = 0

PBAC

Print Blank

Yes

No k < 10 ?

Print:

Xi+1' yi+l' ~r> r

RESID RCAP

k = k + 1

No

X. n

AB 1+1

y - yi+1

2 J

i = 0

S = 0
Print Blank

Print Resid. Headings

Yes
|A4| < e ?

and

I AB I < e ?

FLOW CHART FOR EXAMPLE 2$.

FIGURE 53.

EPDS

PI = B

P2 = AX

X. .,
i+l

i+1 Pl/B

P3 = y. n - A PI Ji+1

Contribute to

Normal Equations

i = i + 2

Yes
i < 2J ?

No

Solve Normal Equations

obtain M and AB

V
A = A + A4

B = B + AB

PRINT:A = B =

H

ON

BO = >B0S ENTER(PRINT B)

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 29

BLOClA1,1-A2,3/5Y.)H1-P3JC1-C2)D1-D1000)

SYN (Xl=Dl)Yl=DZ)

START RfcADl1000)NOS.ATIDl)? 2J=09

NEXTC READIA0)B0)% PRINT-FORMAT{F)-<A0 = >A0<

A = AO* ö=BO* SET(K=0)

NEXTIT SET(I=OU CLEAR(5)NOS.AT(Al,1)

EPDS P1=B**X1,I* P2=A*X1,I»P1/BX P3=Y1,I-A*P1

ENTER (F.N.E.) Al, 1.)2)Pl% C0UNT12J/2) INC I) GOTO (EPDS)

fcNTER(SY.SNE)Al ,l)2)(;i:g A=A+C1* B=B+C2

PRINT-FORMAT(F)-<A = >A< B = >B

IF-ABS(Cl<.001)AND-ABStC2<.001)GOTO(RCAP)

COUNT(10)IN(K)GO TO(NEX T[T)

PBAC ENTER(PRINT R)% GOTO«NEXTO

RCAP SETI 1=0)* S = OS ENTERfPRINT BU

PRINK X Y YBAR

RESID YBAR=A»B»»X1,IX R=YBAR-Yl,IS S=S+R*R

PRlNT-F0RMAT(F)-(XI,I>Yl,I)YBAR) R

COUNT{2J/2)INK I)GOTO«RES ID)% ENTER(CVITOF)2J)N

RMS=SQRT<2*S/NK PR I NT-FORMAT(F)-<RMS = > RMS« GOTO(PBAC)

F FORM(12-4-10)3-2)1-4)2

END GOTO(START)

0.0 J.005 0.5 4.223

1.5 8.5 2.0 11.99

-1L.0 1.47 -0-5 2.180

23 JULY,63 PAGE

R>% ENTERIPRINT B)

1.0 5.98 3

2.5 17.

-2.0 .747

1
1

2

3

4

5

6

7

8

9

1.0

1.1

12

13

14

1.5

1.6

17

1.8

19

20

21

22

4.0

1.0

1.5

1.0

H
MD

MAY.23,63 BRLESC F:ORAST F62
PROB C906 M.J.ROMANE LLI 45107 EXAMPLE 29

AO = 4. 0000 BO = 1.5000

A = 3. 0115 B = 1.9496
A = 2. 9963 B = 2.0025
A = 2. 99 72 B = 2.0016

X Y YBAR R

.0000 3.0050 2.9972 - .,0078

.5000 4.22 30 4.2404 .0174
1.0000 5.98 30 5.9993 .0163
1.5000 8.5000 8.4878 - .0122
2.0000 11.9900 12.0085 .0 185
2.5000 17.0000 16.989!3 - .0105
i.OOOO 1.4700 1.4974 .0274
.5000 2.1800 2.1185 - .0615

2.000Ü .7470 .7481 .0011
RMS = .02 5 3

AO = 1. 0000 BO = 1.0000

A = 4. 6050 B = 4.4132
A = I. 7647 B = 3.8917
A = 2. 0481 B = 2.5747
A = 2. 84 76 B = 1.9399
A = 2. 9959 B := 2.0066
A = 2. 99 72 B = 2.0017
A = 2. 9972 B = 2.0016

X Y YBAR R

.0000 3.0050 2.9972 - «0078

.5000 4.22 30 4.2404 « 0174
1.0000 5.98 30 5.9993 «0163
1.5000 8.5000 8.4878 - «0122
2.0000 11.9900 12.0085 «0185
2.5000 17.0000 16.9895 - .0105
1.0000 1.4700 1.49 74 .0274
.5000 2.1800 2.1185 - »0615

2.0000 . 7470 .7481 .0011

0000004

0000005

RMS = .0253

FIGURE 59.

T7TV A TurrtT TI -z r\

Some problems require random numbers to simulate errors or other random

numbers are called "pseudo-random" since their genesis is known and any set

produced may easily be reproduced. Further} for large enough samples, they

use in various problems. In this example, we illustrate a generator of

normally distributed pseudo-random numbers. Two ENTER statements are used for

venerating these numbers - thev have the general form

ENTER (NRN0S1)A1)n)B1

ENTER(NRN0S2)Al)n)Bl

W11C1 c .

NRNOS is an abbreviation for Normal Random Numbers;

j.iie owu u.j.t> ü_LU<J u eiiuxcxnijeto, iiruiwax cxnu. .m\niwQ<c, cue

essential for reproducibility. The initial entry,

NRN0S1, always yields the same set of numbers. Sub-
Rf»mif»n+. fan+.T-i f=.Q n+. WRWOSP -\Hf»"IH dp+.c: whi^Vi rl-iffpr frnm

preceding sets.

Al is the name of the first of n standard deviation values;

It is assumed that they are recorded in consecutive

locations in internal storage. For standard deviations

cr., i = 1,2,...,n, the pseudo-random numbers produced, X.,

lie in the interval

-ha. < X. < ha.
li l

n is an integer (or name of an integer) which defines the

number of ^seudo—random numbers desired*

Bl is the name of the first of the n pseudo-random numbers

era n o >*a + o r9

In general, the programmer should establish the u. values in A. prior to the

entry to the generator and should reserve space for these and the resulting

values which will be recorded in B., i = l,2,...,n. i" . - -

In the example which follows, we will generate one pseudo-random number

with each entry to NRNOS. Further, we will specify a standard deviation a = 1.

To illustrate, we will generate sets of pseudo-random numbers with set \, sample;

size equal to N, where N = 200, 1+00, 600, 800, 1000, 2000, ... , 5000.

Corresponding to each set N, we will determine, print and identify the following

NP

LX

DA

M0

Ml

M2

us 1.-LJ

P0

PI

P2

TDZ.

SI

S2

S3

the number of negative numbers in the set:

the number of positive numbers in the set;

the largest number in the set;

the smallest number in the set;

the number of X. in the ranse. -k < X. < -2.9999 — - ------ ± „ , x _

the number of X. in the range, -2.9999 < ^ < -1.9999

the number of X. in the range, -1-9999 < X. < - -9999

n-K^v. rsf Y OQQO S Y S O

the number of X. in the range,
l _ '

the number of X. in the range,

the number of X. in the range,

4-Vi^v niimViav r\ -P V" in +V10 •van rrö

> < x, < .9999

•9999 < x. < 1.9999

I.9999 < X± < 2.9999

O QQQQ ^ Y S O OOQO

the percentage of N which lie within 1 standard deviation of the mean;

the percentage of N which lie between 1 and 2 standard deviation of the mean;

the percentage of N which lie between 2 and 3 standard deviation of the mean.

The flow chart for this example is given in FIGURE 60.

The program, input and output are listed in FIGURE 6l.

199

START

ro
o
o

Print Header

Print Blank

N = N + 200

 r~

Print:

N;NN;NP;LX;SX

M3;M2;M1;M0;P0;

P1;P2;P3;

S1;S2;S3

No

N = 200

rar = KP = 0

SX = LX = 0

j = 0

a = 1

Generate the

first number,
X

Bl B2

N < 1200 ?

Uö~

£e

N = N + 800

N < 5001 1

 [W>—

Yes

N.PROB

M0RN05

X<0 ?

 ITo

Yes
ra = M + i

NP = NF + 1

i'
Bk

X > LX ?
Yes

• LX = X

No |

Bo

i = [x + IO"
11

]

'1
AATJ

p, = p. +1
1 I

 > j = j + 1

X < SX ? •
No

lYes
B5 *

SX = X

... L-

Generate the

next number, X
JJZZ. < N ?

No

TAB
Ye;

i = i +1
k = 3 - i

SI. = 100 (^ + P.)

N'

FLOW CHART FOR EXAMPLE 30

FIGURE 60.

45107 EXAMPLE 30
23 JULYt63 PAGE

ro
o
ro

PROB C906 M„ J.ROMANELLI

BLOC (M-M10) %

SYN (P=M4)S1=M8) %

START PRINK N NN NP LX SX M3 M2 Ml M0>

CONT < P0 PI P2 P3 SI S2 !>3>* ENTER(PR INT B)%

SET(N = 200)Ni\l=0)NP=0) J = 0'* SX = LX=0* D=l

fcNTEk (NRN0S1) L>) 1)X % CLEAR (8) NOS. AT (M) %

Bl IF (X<0) GO TO (B2) t INT (NP=NP+1) * IF (X>LX) GO TO (B4)

B6 tNTER (CVFTOI)X) I 'i P,I=P,1 + L % GO TO (AATJ)

B2 IwT CNN=HN+L) % IF (X<SX) GO TO (B3)

B5 X = -X* ENTER (CVFTOI)XlI) Z I NT! K=3~I) 2M, K = M, K+U, GO TO (AATJ)

B3 SX=X % GO TO (Bb)

B4 L.X = X % GO TG (B6J

AATJ COUNT(N) IN(J) GO TO (MORNOS)'* ENTEKlCVITOF)N)N'X SET{ I =0) GOTO<TAB)X

MÜRNOS tNTER (N»NN0S2) D) 1) X £ GO TO (Bl)

TAB Ii^FC K="3-I U SI, I = 100(MtK*P, I)/N'* COUNT (3) I N (I) GOTO (T AB) %

PRINT-FORMAT (F)- (Nl) NN) NP) LX) SX) (1 1) NOS . AT (M) %

COUNT (1200/200) IN (M) GO TO (MORNOS)

COUNT (5001/300) IN (M) GO TO (MORNOS)? GOTO(N.PROK)%

F FORM(4-6)1-3)3-D 12-1-5)1-2)3-1)11-3-4)1-3)3-1)11-4-5)1-2)3-1)11-3-4)

C0MT1-2)3-1)1-1)11-2-3)1-4)%

END GOTO(START)

I
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

MAY.23t63 BftLESC FORAST F62

PROB C906 M.J.ROMANELLI 45107 EXAMPLE 30 *

N NM NP ILX SX M3 M2 Ml MO PO Pi P2 P3 SI S2 S3

200 110 90 3.21 -2.63 000 007 0 33 0070 0061 025 00 3 01 65 29 05

400 205 195 3.21 -2.63 000 009 060 0136 0128 0 55 Oil 01 66 29 05

600 292 308 3.21 -2.63 000 Oil 086 0195 0211 080 016 01 6 8 28 04

800 398 402 3.21 -3.35 001 016 112 0269 0275 107 019 01 68 27 04

1000 494 506 3.21 -3.35 001 019 148 0326 0348 134 023 01 67 28 04

2000 977 102 3 3.21 -3.92 00 3 038 2 74 066 2 0716 2 6b 041 01 69 27 04

ro
o

3000 1468 15 32 3.21 -3.92 004 055 435 09 74 1068 40 3 060 01 68 28 04

4000 1997 2003 3.21 -3.92 00 5 073 5 75 1344 1396 52 3 083 01 68 27 04

5000 2493 2 507 3.24 -3.92 006 091 720 1676 1750 65 5 100 02 6 9 27 04

FIGURE 6l.

Specific examples have been employed as a vehicle to enable the novice to

program for the ORDVAC and BRLESC Scientific Computers and to obtain appropri-

ate solutions. While the full generality of the FORAST language has not been

presented. a sufficient varitv of annroaches are made available to indicate

the flexibility and application of this method. As sophistication is

developed, both mathematically and in programming ability, the student should

-.fa-Pr-v- + r\ ll I -P^-v- o —1/^v.e, ^.^-m-^1 __ + __ ^T p/nip o-i rir, r\-f TTHR A QT1 A^^. + -i^y->c +^ +>.__ 1C1 -1 *_ W J __ • j -L W-L a. lUW-L i3 _ Win^i-L _ i_ _ 1_i_.k___Lk_0_.v_11 v__- x v__ »__(_<_. • nuu± _j.un_ i^_» un _

language subsequent to the publishing of reference 1. are found in Appendix _ _ _. __ LJ

A of this report. Detailed information on available subroutines for plotting

results can be found in reference P-l

ACKNOWLEDGEMENTS

_-_r_ll'w» VY_LC _L^_lllc:il U J-O 11__L^_L<3 _W --J. • J_» . ULL11 HUiti CX11_L J_l _ . U.U. _.__llg_J _. v_<X _11_J-J

critical and constructive review of the text.

MICHAEL J. ROMANELLI

2C4

REFERENCES

1. Campbell, L. W. and Beck, G. A. The Forast Programming Language for
ORDVAC and BRLESC. BRL Report No. 1172, August 1962.

2. Lanahan, J. BRLESC Output Subroutines for Magnetic Tape Dataplotter.
BRL Technical Note No. 1*1-95, April 1965.

205

APPENDIX A.

SOME ADDITIONS TO THE FORAST LANGUAGE

The following additions to the FORAST language are now available.

1.) GOT0,I (A)B)C) <j>

where contents of I must be an integer 1,2,3> i•

The transfer of control is directed to A if I « 1
it it ii it it it " P if T - P

" C if I = 5, etc.

A,B,C, etc., may themselves be indexable names.

2.) GOTO,(I + inc)(A)B)c) $

Same as above with provision for incrementing the existing value of I by

a positive or negative increment.

NOTE: These additions reduce the size of the ORDVAC SYN Table from 6k to 55.

Compiler still checks for synonym full at 6k.

3.) ENTER (PLOT)r)X)XM)Y)YM)h)ix)iy)

where

X = Address of 1st X o

XM = Address of last X

Y = Address of 1st Y o

YM = Address of last Y

h = Handler number

ix = distance between X entries) ,. , , , „ , . s Taken as 1 if not entered ly = distance between Y entries)

If r > 0, tape is rewound before return to program is made.

207

This subroutine is designed to be used when a "quick look" at some data

It is not necessary to determine beforehand the scales, maximum

and minimum values, etc., since the subroutine scans the data and computes the

necessary values.

The subroutine produces (on tape) the information for a 26 by 26 inch *

plot of the data and a plot of the quantities XMAX, XMTN, XSCALE, YMAX, YMIN,

IOUH-UCJ ixa <+ u._Lg,_Lb ^T ur -J uibegcrs W_LUII C lugii, ^T ui - ; iu 0 CA^IUIICUOD.

WARNING: Processing data for plotting uses a lot of tape. If there are

many large variations in Y throughout the plot, one entry to this subroutine

may easily use one-half of a reel of tape.

k.) ENTER(SET.Tl)u)E.T)B)BMAX $

optional after first entrance for this tape unit.

u is tape unit integer (eff. address itself is used.j

l<u<5 or 9 < u < 1*4-

E.T. is optional; if it is zero (or blank) then the routine goes

to N.PROB when the END TAPE sentinel is read.

If specified fnot zero)- then the routine jumps to that

address when the END TAPE sentinel is read.

B is the initial address of a block of core storage that is

large enough to hold the largest block on the tape being read.

BMAX is the last address in the storage block for this tape.

SET.TI allows a program to read data on magnetic tape. It sets the computer

so that subsequent READ statements (or A.READ or READBL subroutines) will cause

data to be read from the tape unit specified. Each 80 characters on tape is

considered to be a "card" by this routine. (Easier use of "formated" hi-speed

printer tape's might be allowed in the future.) As many as six input tapes may

be used in one program by entering this subroutine at different times in the

program, the data will continue with the "cardf" that follows the last "card"

* This may be changed to 26 x 13 "by means of a manual switch at the plotter board.

208

program ever re-uses that unit because a part of a block may need to stay-

there while another unit is being used. When entering with a unit that was

previously used, it is not necessary to specify the storage block addresses;

if specified, they will be ignored. It is not possible to change the storage

block once it has been already assigned. The storage block may be longer than

any block on the tape but must not be shorter than the longest block that is

read from the tape. (A "card" requires 8 words of memory storage. The

storage addresses may be larger than OifOOO in the large memory.) The tape

"hinrV length can bp variable and if anv block is longer than the storage

allocated, the rest of the block will be ignored. All tape reading is parity

checked and re-read five times before causing the erroneous "card" to be

punched and a RUN ERROR card saying "PAR.ERRORu".

The "E.T." (end tape) address should be zero unless it is actually needed.

If it is zero- this tape unit is rewound, the computer is set to read cards and

control goes to N.PROB. If an address is specified, then these things should

be done by the program before going to N.PROB.

It is desirable that a. ata,nda,i-d end of tape sentinel be used by everyone.

It is also nice to have a standard end of reel sentinel. This routine uses

"ENDbTAPEbb" (b is blank) as the end of tape sentinel when it appears as the

first ten characters at the beginning of a block and the next ten characters do
^-r-.-r-.-»- . - If

not say "ENDbREELbb". When the next ten characters do say ""i^Mi/bKüiüiibb "", tnen

it assumes that there is another reel to be read on this same unit, so it re-

winds the tape and halts at 08l so that the operator can mount the new reel.

^The unit no. is in the B address of the halt order.; Standard BRLESC output

will have the END TAPE sentinel if the "rewind tape 8" switch was properly used.

When making tanes off-line, an extra block of one card with this sentinel should

209

mien i eau._i.ng, oape , one uucc neauer uarub niai. were piuuuceu _LII I run b

of previous FORAST or FORTRAN output are automatically skipped. (It checks

for "bbBRLESCbb" in characters 11-20.) A dictionary will not be automatically

cV-i nnoH "Kl i+ T+ TO Q! T.TQ ire "Pr^l ~\ r~n.7Ci^ Vnr -pr~ii IT-* Vil QnV r>Q -y-A o a r-..-^ Vicmnci +Vi^ A T3T71 A Fl
Uli. J. Uj:/\^'_t. • 1^1^*.^ J.l_i _l_t-_} *-*___ ««-^.V ._) -i->w'_l__l_,^'r»>.„_*. 1^^ -L'_'»_*.-L l^_l_t_*.l J_ti. v_t-* A. ^A-KJ (J.11W. JH, 1.11...V, ^lll„ J"i • J. ' • ""* ' '

routine may be used and your program can check for the blank cards (you need

only check the first word) before starting to read actual data.

A word within this routine is named SKP.TL and it may be used to "skip

tape lines". If it is set to an integer (not fl.pt.), then the next tape

read will skip that many "cards". (if the skip includes the "header cards",

then they must be included in the integer that is put into SKP.TL).

The in^ut data _naAr alternate between ta_ne and cards at will« The use

of ENTER(SET.Cl)$ will set the computer for reading cards. (SET.CI is a small

subroutine within the SET.TI subroutine. If tape No. 6 is being used instead

of card input, then it sets for tape 6 input. If cards or tape 6 is being

used at the time SET.CI is entered, it does nothing.)

There are three possible error ^rints in this subroutine. The^r are!

SET.TI 6 Tried to use more than six tape units.

O'CTP TIT 13117 TIn„„ ^,-, ~o 4--; , r„ -K-, .-P-p„-*, -\ „_„.4-V, I "D "^ "DMAvV^-^ 1 nr, rr+V, ^ "I £ *ft ^ Uüi . ±4-JJULI nave nc^auivc UU-L-LCJ. 4.C115U11. \u ^ .m-irwi. j \ ^j x 4.^115^11 ^ ^^^y/

PAR.ERRORu Parity error on tape unit u. Is preceded by the "card"

that contains the error.

It is permissible to set for tape unit u when the same unit u is being

used at the time SET.TT is entered.

5.) GOTO(C.PROB)$

C.PR0B is the name Of a subroutine that alluwS the Cumpilatiun and

running of several programs without stopping between them. It is similar

to N.PROB and does everything that N.PROB normally does except for putting

.-, -p,-i „ mnv^v ^^ ^i,4-„,,4- 4-„„„ ft r,„A ^.v,^,..,--.»-~ -P„-„ ^.^TI-; ^AA -,~ 4-^,-^^ ft (v^-*
O. 1 1J.C lliO.4. X_. Uli UUOpUU OCLpe W ClilU. U1CU1\111^ ± *U± l CW4IlUlllg OClpC <w» • v, 4." ^4.

purposes of tape 6 input, tape 8 output and for operator control of the

computer, several programs combined by using C.PROB will still be con-

sidered as one problem, i

210

£iix.ner JLITXTIR ur uuxu v^ux any jump urucry "j^iy uc uscu ou enter L.KKLUJ.

Any new program that is compiled after going to C.PROB must have

a PROB card as its first card. It is permissible to allow a READ state-

previous problem is done running if the name C.PROB was used somewhere

in the program. (if C.PROB is in the dictionary., then reading a PROB

card causes control to go to C.PROB subrouting and the PROB card is

also used as the first card of the next program to be compiled.;

In any set of programs, the last one should not use C.PROB. (if

this is done and tape 6 input is used, then the next problem will be done

as a continuation of your problem.)

The "DATE" will be propagated through all the programs if it precedes

the first one.

When using C.PROB, the "card counter" (067) and the input-output

options will remain set to what they were at the completion of the

previous program. (The permanent constant block (p40-07L) is not re-

read before the next program is compiled. However ERROR (066) and M.DUMP

(O58) are reset to N.PROB)

After a RUN ERROR print, control goes to N.PROB (not C.PROB) unless

the program has used ERROR as a location.

If tape input has been used (SET.TI subroutine), C.PROB will set

for "card input" before compiling the next program.

6.) ENTER(MAX.)A)B)C) $

MAX is a subroutine that finds the largest floating point number and

stores it in the last address specified in the ENTER statement.

•7 \ TTIVfrTiTTO/'MTTVT "i A ^•D^P^ OL j • j U11J.ULI yj.-Jj.xi • jr\ j ±j j w j • • • • • • • •• . . iu

MIN. is a subroutine that finds the smallest floating point number

emu. bwrcb j. 1/ xii one laai; CIU.U_L"Cüü b^ctiiicu,

8.) ENTER(MAX.I)I)J)K) i>

MAX.I is a subroutine that finds the largest integer and stores it

in the last address specified*

9.) ENTER(MIN.I)I)J)K) <jo

MIN.I is a subroutine that finds the smallest integer and stores it

in the last address specified.

In each of the above four subroutines (actually four entrances to one

subroutine)j the number of arguments is variable and is determined by the
„,,—T~ ~-r» ^^^q ~ — ~ n^-j+i A ~ 4-"u~ TTTVIIIIL'L) ~4-« -*- rtw,~ v^4- frnu^.-**^ ,T111..+- "U„ ,-, 4-
iiumutJi" ui ciuLirdbüeb wi j_ o utrii xn unt: xu^xiun ö UCL ociucno. \XIIC:J.C IUUü u uc ci u

least two arguments.) The last address is always the store address and

is not used as an argument. Each argument is a single number, not a

Care must be exercised in using negative integers as arguments for

MAY T *"i-y "MT1\T T Via^anea a npffQ + niro n n+orrpr in an "Tnr^ov' rocri q+.pr ui 1 I

appear as a large positive integer. (The comparison is made on a full

word basis.)

The next order following one of the subroutine entrances must not be

a NOP. (it won't be unless you write one as an assembly order.)

10.) BNTER(MOD.)A)B)C <f>

This subroutine will compute C = A(mod B) where A;B, and C are the

respective addresses of f "I nat.i nt? -nm'nt numbers as indicated in the ENTER -o jr '

statement above. It is defined as C = A - WH0LE^A/B;*B in terms of a

FORAST formula.

1 1 l O-tv /->v\4--i /-wiol «-*-»(-*i imöv-i-4- c: Vs mrö "Kaon a /-l /-I ^n/I +/~» + Vi Q MA T1 MP Gi iVvr»m i+ -i rt ü + r-» oil c-»T.T _!__!_•/ kJ-L-A. ^ P t-'-LVliGL.L. C>-1- g^UJllcjll UO ixe* V ti U*-- t_ ii (j,i_L^(.ti>_*. L*V_* un^ ±'u \ .L. A-JJ. UU.I;I. UW.^±U^ <-"-' (j,j_ u_ W r»

the elements of the rows and columns of the matrices to be stores in

equally spaced memory positions.

ENTER(MAT.MP)A11)B11)C11)i)j)k)z)ra)ca)rb)cb)rc)cc)%

where

A ,B ,C are the addresses of the first elements

of the respective matrices.

i, j, k are the dimensions of the matrices

(j is always the common dimension.)

z is a 3 digit sexadecimal number (Od dpd,)

where d indicates the options applying

to matrix A- d to matrix B- and d- to

matrix C.

d. =0 means to use the matrix as stored.
i

not augmented

d. =1 means to use the transpose of the

matrix stored.

d. = 2 means the matrix is augmented

d = 3 means both 1 and 2 apply

if d = k, 5> 6, or 7 it means to accumulate

in C as well as above options.

r is the distance between the first elements of each
a

row of matrix A.

d±2

c is the distance between the first elements uf a
each column of matrix A.

(ie) address A p - address A

r, ,c, ; r ,c have the same meaning for matrices B and C.
0' 0 ' c c

Pairs of arguments ma'"- be omitted froir the rights

Zero arguments for r and c are not valid, when

r and c is specified, the augment portion of z

for that matrix is ienored.

Gi vfin: a_ _ b.. c... a. „ b. „ c, „ a, , b, , c. , x x x x
* 11 ll 11 rd ±d Id LO -O -O

a h t» Q "h C a "h r* Y v Y y
21 21 21 22 22 22 23 23 23

a^ **i Gz-, aM b*o c*o a^ *« c^ x x x x
^-1- J-L- J-L- J<- J<- .<"- JJ SS SS

ENTER(MAT.MP)a11)b11)c11)3)3)3)010l|)l3)3)l3)3)l3)3)^

would "produce

T A -R 4- P -In n

i.e., c±1 = o±1 + &11o1± * &21 D21 - a31u31 , exc.

^-i i,

IAD Accession No. UNCLASSIFIED
Ballistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
FORAST (Formula ana Assembly Translator)
Michael J. Romanelli

j BRL Report Ho. 1209 July 1963

Computers - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming

RDT & E Project No. 1M01O5O1AOO3
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories,. Programs
written in this language, with minor limitations, may be executed on either
computer. BRL Report No. 1172, [l], describes FORAST in its generality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language are illustrated in many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language,. Some of the
mEiterial Is repetitious but amplified and several references are made to [1].

Computers - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming

AD Accession Ho. UNCLASSIFIED
Ballistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
FORAST (Formula and Assembly Translator)
Michael J. Romanelli

BRL Report No. L'209 July 1963

RDT & E Project Ho. IMOIO5OIAOO3
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
written in this language, with minor limitations, may be executed on either
computer. BRL Report No. 1172, [1], describes FORAST in its generality and. was
written primarily for professional programmers. This report is intended for the
novice. Fundamenta! concepts and details of the language are illustrated in many
examples so that the novice Is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language. Some of the
material is repetitious but amplified and several, references Eire made to [!].

Accession No. AD
:Ballistic Research Laboratories, APG
I INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
1 FORAST (Formula and Assembly Translator)
iMichael J. Romanelli

UNCLASSIFIED Accession Ho.

Computers - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming

! BEL Report No. 1209 July 1963

'RDT & E Project No. 1M010501AO03
;UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
'high-speed digital computers of the Ballistic Research Laboratories. Programs
written In this language, with minor limitations, may be executed on either

; computer.. BRL Report No. 1172, [1], describes FORAST in its generality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the: language are illustrated in many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language. Some of the
material is repetitious but amplified and several references are made to [1].

UNCLASSIFIED

Computers - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming

AD
Ballistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
FORAST (Formula and Assembly Translator)
Michael J.. Romanelli

BRL Report No. 1209 July 1963

RDT & E Project No. 1MO10501AO03
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
written in this language, with minor limitations, may be executed on either
computer. BRL Report No. 1172, [1], described FORAST in Its generality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language are illustrated In many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language. Some of the
material is repetitious but amplified and several references are made to [1].

Accession No. UNCLASSIFIED

Computers - Programming
Programming language
GKDVAC - Programming
BRLESC - Programming;

! AD
j Ballistic Research Laboratories, APG
! INTRODUCTORY PROGRAMMING FOE ORDVAC AMD BRLESC
j FORAST (Formula and Assembly- Translator)
; MJLchael J. Romanelli

BRL Report No. 1209 July 19*63

j ROT & E Project No. 1M010501A0OJ
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
written in this language, with minor limitations, may be executed on either
Computer. BRL Report No. 1172, [1], describes FORAST in its generality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language are illustrated in many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language. Some of the
material is repetitious but amplified and several references are made to [1].

Computers - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming

AD Accession Ho. UNCLASSIFIED
Ballistic Research Laboratories, APG
INTRODUCTORY EROGRAMMIIJG FOR ORDVAC AND BRLESC
FORAST (Formula and Assembly Translator)

: Michael J. Romanelli
I

BRL Report No. 1209 July 1963

RDT & E Project No. 1M010501AO03
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
written in this language, with minor limitations, may be executed on either
computer. 3RL Report Ho. 1172, [1], describes FORAST in its generality and. was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language tire illustrated in many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language. Some of the
material is repetitious but amplified and several, references Eire made to [1].

Accession No.. AD
.Ballistic Research Laboratories, APG

INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
FORAST (Formula and Assembly Translator)
Michael J. Romanelli

UNCLASSIFIED Accession Mo.

Computers - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming

BRL Report No. 1209 July 1963

RDT & E Project No. IMOIO5OIAOO3
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories.. Programs
written in this language, with minor limitations, may be executed on either
computer. BRL Report No. 1172, [1], describes FORAST in its generality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language are illustrated in many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language.. Some of the
material is repetitious but amplified and severed references are made to [1].

UNCLASSIFIED

Computer's - Programming
Programming language
ORDVAC - Programming
BRLESC - Programming

AD
Ballistic Research Laboratories, APG
INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC
FORAST (Formula and Assembly Translator)
Michael J.. Romanelli

BRL, Report No. 1209 July 1963

RET1 & E Project No. IMOIO5OIAOO3
UNCLASSIFIED Report

FORAST is a programming language designed for use on ORDVAC and BRLESC, the
high-speed digital computers of the Ballistic Research Laboratories. Programs
written in this language, vith minor limitations., may be executed on either
coniputer. BRL Report Ho. 1172, [1], described FORAST in its generality and was
written primarily for professional programmers. This report is intended for the
novice. Fundamental concepts and details of the language are illustrated in many
examples so that the novice is taught how to program and obtain practical solu-
tions for a variety of mathematical problems. Intended as a supplement to [1],
this report does not illustrate the full generality of the language. Some of the
material is repetitious but amplified and several references are made to [1].

